PageTableFlags

Struct PageTableFlags 

Source
pub struct PageTableFlags {}

Implementations§

Source§

impl PageTableFlags

Source

pub const exec fn PRESENT() -> res : usize

Specifies whether the mapped frame or page table is loaded in memory.

Source

pub const exec fn WRITABLE() -> res : usize

Controls whether writes to the mapped frames are allowed.

Source

pub const exec fn USER() -> res : usize

Controls whether accesses from userspace (i.e. ring 3) are permitted.

Source

pub const exec fn WRITE_THROUGH() -> res : usize

If this bit is set, a “write-through” policy is used for the cache, else a “write-back” policy is used.

Source

pub const exec fn NO_CACHE() -> res : usize

Disables caching for the pointed entry if cacheable.

Source

pub const exec fn ACCESSED() -> res : usize

Whether this entry has been used for linear-address translation.

Source

pub const exec fn DIRTY() -> res : usize

Whether the memory area represented by this entry is modified.

Source

pub const exec fn HUGE() -> res : usize

Only in the non-starting and non-ending levels, indication of huge page.

Source

pub const exec fn GLOBAL() -> res : usize

Indicates that the mapping is present in all address spaces, so it isn’t flushed from the TLB on an address space switch.

Source

pub const exec fn NO_EXECUTE() -> res : usize

Forbid constute codes on the page. The NXE bits in EFER msr must be set.

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<T, VERUS_SPEC__A> FromSpec<T> for VERUS_SPEC__A
where VERUS_SPEC__A: From<T>,

§

fn obeys_from_spec() -> bool

§

fn from_spec(v: T) -> VERUS_SPEC__A

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

§

impl<T, VERUS_SPEC__A> IntoSpec<T> for VERUS_SPEC__A
where VERUS_SPEC__A: Into<T>,

§

fn obeys_into_spec() -> bool

§

fn into_spec(self) -> T

§

impl<T, U> IntoSpecImpl<U> for T
where U: From<T>,

§

fn obeys_into_spec() -> bool

§

fn into_spec(self) -> U

Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
§

impl<T, VERUS_SPEC__A> TryFromSpec<T> for VERUS_SPEC__A
where VERUS_SPEC__A: TryFrom<T>,

§

fn obeys_try_from_spec() -> bool

§

fn try_from_spec( v: T, ) -> Result<VERUS_SPEC__A, <VERUS_SPEC__A as TryFrom<T>>::Error>

Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<T, VERUS_SPEC__A> TryIntoSpec<T> for VERUS_SPEC__A
where VERUS_SPEC__A: TryInto<T>,

§

fn obeys_try_into_spec() -> bool

§

fn try_into_spec(self) -> Result<T, <VERUS_SPEC__A as TryInto<T>>::Error>

§

impl<T, U> TryIntoSpecImpl<U> for T
where U: TryFrom<T>,

§

fn obeys_try_into_spec() -> bool

§

fn try_into_spec(self) -> Result<U, <U as TryFrom<T>>::Error>