1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
use alloc::boxed::Box;
use alloc::sync::Arc;
use core::marker::PhantomData;
use core::mem::ManuallyDrop;
use core::ops::{Deref, Not};

use crate::node::{TryClone, XNode};

/// A trait for the types users wish to store in an `XArray`.
///
/// Items stored in an `XArray` must be representable by a `*const ()` aligned to 4. We prefer
/// `*const ()` than `usize` to make the implementation conform to [Strict Provenance][1].
///
///  [1]: https://doc.rust-lang.org/std/ptr/index.html#strict-provenance
///
/// # Safety
///
/// Users must ensure that [`ItemEntry::into_raw`] always produce `*const ()`s that meet the above
/// alignment requirements.
///
/// Users must also ensure that as long as the value does not get dropped (e.g., by dropping the
/// value obtaining from [`ItemEntry::from_raw`]), it is safe to invoke [`ItemEntry::raw_as_ref`]
/// multiple times to obtain values of [`ItemEntry::Ref`] that behave just like shared references
/// to the underleying data.
pub unsafe trait ItemEntry {
    /// A type that behaves just like a shared references to the underleying data.
    type Ref<'a>: Deref<Target = Self>
    where
        Self: 'a;

    /// Converts the original value into a `*const ()`, consuming the ownership of the original
    /// value.
    fn into_raw(self) -> *const ();

    /// Recovers the original value from a `*const ()`, reclaiming the ownership of the original
    /// value.
    ///
    /// # Safety
    ///
    /// The original value must have not been dropped, and all references obtained from
    /// [`ItemEntry::raw_as_ref`] must be dead.
    unsafe fn from_raw(raw: *const ()) -> Self;

    /// Obtains a shared reference to the original value.
    ///
    /// # Safety
    ///
    /// The original value must outlive the lifetime parameter `'a`, and during `'a` no mutable
    /// references to the value will exist.
    unsafe fn raw_as_ref<'a>(raw: *const ()) -> Self::Ref<'a>;
}

/// A type that represents `&'a Arc<T>`.
#[derive(PartialEq, Debug)]
pub struct ArcRef<'a, T> {
    inner: ManuallyDrop<Arc<T>>,
    _marker: PhantomData<&'a Arc<T>>,
}

impl<'a, T> Deref for ArcRef<'a, T> {
    type Target = Arc<T>;

    fn deref(&self) -> &Self::Target {
        &*self.inner
    }
}

// SAFETY: `Arc<T>` meets the safety requirements of `ItemEntry`.
unsafe impl<T> ItemEntry for Arc<T> {
    type Ref<'a> = ArcRef<'a, T> where Self: 'a;

    fn into_raw(self) -> *const () {
        // A contant expression, so compilers should be smart enough to optimize it away.
        assert!((core::mem::align_of::<T>() & XEntry::<Self>::TYPE_MASK) == 0);

        Arc::into_raw(self).cast()
    }

    unsafe fn from_raw(raw: *const ()) -> Self {
        // SAFETY: By the safety requirements of `ItemEntry::from_raw`, the original value has not
        // been dropped and there are no outstanding references to it. Thus, the ownership of the
        // original value can be taken.
        unsafe { Arc::from_raw(raw.cast()) }
    }

    unsafe fn raw_as_ref<'a>(raw: *const ()) -> Self::Ref<'a> {
        // SAFETY: By the safety requirements of `ItemEntry::raw_as_ref`, the original value
        // outlives the lifetime parameter `'a` and during `'a` no mutable references to it can
        // exist. Thus, a shared reference to the original value can be created.
        unsafe {
            ArcRef {
                inner: ManuallyDrop::new(Arc::from_raw(raw.cast())),
                _marker: PhantomData,
            }
        }
    }
}

/// A type that represents `&'a Box<T>`.
#[derive(PartialEq, Debug)]
pub struct BoxRef<'a, T> {
    inner: *mut T,
    _marker: PhantomData<&'a Box<T>>,
}

impl<'a, T> Deref for BoxRef<'a, T> {
    type Target = Box<T>;

    fn deref(&self) -> &Self::Target {
        // SAFETY: A `Box<T>` is guaranteed to be represented by a single pointer [1] and a shared
        // reference to the `Box<T>` during the lifetime `'a` can be created according to the
        // safety requirements of `ItemEntry::raw_as_ref`.
        //
        // [1]: https://doc.rust-lang.org/std/boxed/#memory-layout
        unsafe { core::mem::transmute(&self.inner) }
    }
}

// SAFETY: `Box<T>` meets the safety requirements of `ItemEntry`.
unsafe impl<T> ItemEntry for Box<T> {
    type Ref<'a> = BoxRef<'a, T> where Self: 'a;

    fn into_raw(self) -> *const () {
        // A contant expression, so compilers should be smart enough to optimize it away.
        assert!((core::mem::align_of::<T>() & XEntry::<Self>::TYPE_MASK) == 0);

        Box::into_raw(self).cast_const().cast()
    }

    unsafe fn from_raw(raw: *const ()) -> Self {
        // SAFETY: By the safety requirements of `ItemEntry::from_raw`, the original value has not
        // been dropped and there are no outstanding references to it. Thus, the ownership of the
        // original value can be taken.
        unsafe { Box::from_raw(raw.cast_mut().cast()) }
    }

    unsafe fn raw_as_ref<'a>(raw: *const ()) -> Self::Ref<'a> {
        BoxRef {
            inner: raw.cast_mut().cast(),
            _marker: PhantomData,
        }
    }
}

/// A type serving as the basic unit of storage for `XArray`s, used in the head of the `XArray` and
/// the slots of `XNode`s.
///
/// There are the following types of `XEntry`:
/// - Internal entries: These are invisible to users and have the last two bits set to 10.
/// - Item entries: These represent user-given items and have the last two bits set to 00.
///
/// An `XEntry` owns the item or node that it represents. Once an `XEntry` generated from an item
/// or an `XNode`, the ownership of the item or the `XNode` will be transferred to the `XEntry`.
///
/// An `XEntry` behaves just like the item or node it represents. Therefore, if the item type `I`
/// implements the [`Clone`] trait, the `XEntry` will also also implement the [`Clone`] trait.
#[derive(PartialEq, Eq, Debug)]
#[repr(transparent)]
pub(super) struct XEntry<I>
where
    I: ItemEntry,
{
    raw: *const (),
    _marker: core::marker::PhantomData<(Arc<XNode<I>>, I)>,
}

// SAFETY: `XEntry<I>` represents a value of either `Arc<XNode<I>>` or `I`.
unsafe impl<I: ItemEntry> Send for XEntry<I> where (Arc<XNode<I>>, I): Send {}
unsafe impl<I: ItemEntry> Sync for XEntry<I> where (Arc<XNode<I>>, I): Sync {}

#[derive(PartialEq, Eq, Debug)]
#[repr(usize)]
enum EntryType {
    Node = 0,
    Item = 2,
}

impl TryFrom<usize> for EntryType {
    type Error = ();

    fn try_from(val: usize) -> Result<Self, Self::Error> {
        match val {
            x if x == EntryType::Node as usize => Ok(EntryType::Node),
            x if x == EntryType::Item as usize => Ok(EntryType::Item),
            _ => Err(()),
        }
    }
}

impl<I: ItemEntry> XEntry<I> {
    const TYPE_MASK: usize = 3;

    pub const EMPTY: Self = Self {
        raw: core::ptr::null(),
        _marker: PhantomData,
    };

    // SAFETY: `ptr` must be returned from `Arc::<XNode<I>>::into_raw` or `I::into_raw` and be
    // consistent with `ty`. In addition, the ownership of the value of `Arc<XNode<I>>` or `I` must
    // be transferred to the constructed instance of `XEntry`.
    unsafe fn new(ptr: *const (), ty: EntryType) -> Self {
        let raw = ptr.map_addr(|addr| {
            debug_assert!(addr & Self::TYPE_MASK == 0);
            addr | (ty as usize)
        });
        Self {
            raw,
            _marker: PhantomData,
        }
    }

    fn ptr(&self) -> *const () {
        self.raw.map_addr(|addr| addr & !Self::TYPE_MASK)
    }

    fn ty(&self) -> Option<EntryType> {
        self.is_null()
            .not()
            .then(|| (self.raw.addr() & Self::TYPE_MASK).try_into().unwrap())
    }

    pub fn is_null(&self) -> bool {
        self.raw.is_null()
    }
}

pub(super) enum NodeMaybeMut<'a, I>
where
    I: ItemEntry,
{
    Shared(&'a XNode<I>),
    Exclusive(&'a mut XNode<I>),
}

impl<'a, I: ItemEntry> Deref for NodeMaybeMut<'a, I> {
    type Target = XNode<I>;

    fn deref(&self) -> &XNode<I> {
        match &self {
            Self::Shared(ref node) => node,
            Self::Exclusive(ref node) => node,
        }
    }
}

impl<I: ItemEntry> XEntry<I> {
    pub fn from_node(node: XNode<I>) -> Self {
        let node_ptr = {
            let arc_node = Arc::new(node);
            Arc::into_raw(arc_node).cast()
        };
        // SAFETY: `node_ptr` is returned from `Arc::<Node<I>>::into_raw` and the ownership of the
        // value of `Arc<XNode<I>>` is transferred.
        unsafe { Self::new(node_ptr, EntryType::Node) }
    }

    pub fn is_node(&self) -> bool {
        self.ty() == Some(EntryType::Node)
    }

    pub fn as_node_ref(&self) -> Option<&XNode<I>> {
        if !self.is_node() {
            return None;
        }

        // SAFETY: `self` owns the value of `Arc<XNode<I>>`.
        Some(unsafe { &*self.ptr().cast() })
    }

    pub fn as_node_maybe_mut(&mut self) -> Option<NodeMaybeMut<'_, I>> {
        match self.node_strong_count() {
            0 => None,
            // SAFETY: `&mut self` ensures the exclusive access to the value of `Arc<XNode<I>>`,
            // and `node_strong_count() == 1` ensures the exclusive access to the value of
            // `XNode<I>`.
            1 => Some(NodeMaybeMut::Exclusive(unsafe {
                &mut *self.ptr().cast_mut().cast()
            })),
            // SAFETY: `self` owns the value of `Arc<XNode<I>>`.
            _ => Some(NodeMaybeMut::Shared(unsafe { &*self.ptr().cast() })),
        }
    }

    pub fn as_node_mut_or_cow(&mut self) -> Option<&mut XNode<I>> {
        match self.node_strong_count() {
            0 => return None,
            // SAFETY: `&mut self` ensures the exclusive access to the value of `Arc<XNode<I>>`,
            // and `node_strong_count() == 1` ensures the exclusive access to the value of
            // `XNode<I>`.
            1 => return Some(unsafe { &mut *self.ptr().cast_mut().cast() }),
            _ => (),
        }

        // SAFETY: `self` owns the value of `Arc<XNode<I>>`.
        let node: &XNode<I> = unsafe { &*self.ptr().cast() };
        let new_node = node.try_clone().unwrap();

        *self = Self::from_node(new_node);
        // SAFETY: `node_strong_count() == 1` now holds.
        Some(unsafe { &mut *self.ptr().cast_mut().cast() })
    }

    fn node_strong_count(&self) -> usize {
        if !self.is_node() {
            return 0;
        }

        // SAFETY: `self` owns the value of `Arc<XNode<I>>` and the constructed instance of
        // `Arc<XNode<I>>` will not be dropped.
        let node = unsafe { ManuallyDrop::new(Arc::<XNode<I>>::from_raw(self.ptr().cast())) };
        Arc::strong_count(&*node)
    }
}

impl<I: ItemEntry> XEntry<I> {
    pub fn from_item(item: I) -> Self {
        let item_ptr = I::into_raw(item);
        // SAFETY: `item_ptr` is returned from `I::from_raw` and the ownership of the value of `I`
        // is transferred.
        unsafe { Self::new(item_ptr, EntryType::Item) }
    }

    pub fn is_item(&self) -> bool {
        self.ty() == Some(EntryType::Item)
    }

    pub fn into_item(self) -> Option<I> {
        if !self.is_item() {
            return None;
        }

        let ptr = self.ptr();
        core::mem::forget(self);

        // SAFETY: `self` owns the value of `I`.
        Some(unsafe { I::from_raw(ptr) })
    }

    pub fn as_item_ref(&self) -> Option<I::Ref<'_>> {
        if !self.is_item() {
            return None;
        }

        let ptr = self.ptr();

        // SAFETY: `self` owns the value of `I` and does not create any mutable references to the
        // value. Thus, the value of `I` outlives the lifetime of `&self`.
        Some(unsafe { I::raw_as_ref(ptr) })
    }
}

impl<I: ItemEntry> Drop for XEntry<I> {
    fn drop(&mut self) {
        match self.ty() {
            None => (),
            // SAFETY: `self` owns the value of `I`.
            Some(EntryType::Item) => unsafe {
                I::from_raw(self.ptr());
            },
            // SAFETY: `self` owns the value of `Arc<XNode<I>>`.
            Some(EntryType::Node) => unsafe {
                Arc::<XNode<I>>::from_raw(self.ptr().cast());
            },
        }
    }
}

impl<I: ItemEntry + Clone> Clone for XEntry<I> {
    fn clone(&self) -> Self {
        match self.ty() {
            None => Self::EMPTY,
            Some(EntryType::Item) => {
                // SAFETY: `self` owns the value of `I` and does not create any mutable references to the
                // value. Thus, the value of `I` outlives the lifetime of `&self`.
                let item_entry = unsafe { I::raw_as_ref(self.ptr()) };
                Self::from_item((*item_entry).clone())
            }
            // SAFETY: `self` owns the value of `Arc<XNode<T>>`, and `Arc` can be cloned by
            // increasing its strong count.
            Some(EntryType::Node) => unsafe {
                Arc::<XNode<I>>::increment_strong_count(self.ptr().cast());
                Self {
                    raw: self.raw,
                    _marker: PhantomData,
                }
            },
        }
    }
}