1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
use core::marker::PhantomData;
use smallvec::SmallVec;
use crate::borrow::{DestroyableMutRef, DestroyableRef, DormantMutRef};
use crate::entry::{ItemEntry, NodeMaybeMut, XEntry};
use crate::mark::XMark;
use crate::node::XNode;
use crate::xarray::{XArray, MAX_HEIGHT, SLOT_SIZE};
trait Operation {}
struct ReadOnly {}
struct ReadWrite {}
impl Operation for ReadOnly {}
impl Operation for ReadWrite {}
/// A type representing the state of a [`Cursor`] or a [`CursorMut`]. Currently, there are three
/// possible states:
/// - `Inactive`: The cursor is not positioned on any node.
/// - `AtNode`: The cursor is positioned on some node and holds a shared reference to it.
/// - `AtNodeMut`: The cursor is positioned on some node and holds an exclusive reference to it.
///
/// Currently, a cursor never ends up on an interior node. In other words, when methods of `Cursor`
/// or `CursorMut` finish, the cursor will either not positioned on any node or positioned on some
/// leaf node.
///
/// A `Cursor` manages its state with `CursorState<'a, I, ReadOnly>`, which will never be in the
/// `AtNodeMut` state. A `Cursor` never attempts to perform modification, so it never holds an
/// exclusive reference.
///
/// On contrast, a `CursorMut` uses `CursorState<'a, I, ReadWrite>` to manage its state, where all
/// the three states are useful. Due to the COW mechansim, a node can be shared in multiple
/// `XArray`s. In that case, the `CursorMut` will first enter the `AtNode` state as it cannot hold
/// an exclusive reference to shared data. Just before performing the modification, it copies the
/// shared data and creates the exclusive reference, which makes the cursor enter `AtNodeMut`
/// state.
enum CursorState<'a, I, O>
where
I: ItemEntry,
O: Operation,
{
Inactive(PhantomData<O>),
AtNode {
node: DestroyableRef<'a, XNode<I>>,
operation_offset: u8,
},
AtNodeMut {
node: DestroyableMutRef<'a, XNode<I>>,
operation_offset: u8,
},
}
impl<'a, I: ItemEntry, O: Operation> Default for CursorState<'a, I, O> {
fn default() -> Self {
Self::Inactive(PhantomData)
}
}
impl<'a, I: ItemEntry, O: Operation> CursorState<'a, I, O> {
fn move_to(&mut self, node: &'a XNode<I>, index: u64) {
let operation_offset = node.entry_offset(index);
*self = Self::AtNode {
node: DestroyableRef::new(node),
operation_offset,
};
}
}
impl<'a, I: ItemEntry> CursorState<'a, I, ReadWrite> {
fn move_to_mut(&mut self, node: &'a mut XNode<I>, index: u64) {
let operation_offset = node.entry_offset(index);
*self = Self::AtNodeMut {
node: DestroyableMutRef::new(node),
operation_offset,
};
}
fn move_to_maybe_mut(&mut self, node: NodeMaybeMut<'a, I>, index: u64) {
match node {
NodeMaybeMut::Shared(node) => self.move_to(node, index),
NodeMaybeMut::Exclusive(node) => self.move_to_mut(node, index),
}
}
}
impl<'a, I: ItemEntry, O: Operation> CursorState<'a, I, O> {
fn into_node(self) -> Option<(&'a XNode<I>, u8)> {
match self {
Self::AtNode {
node,
operation_offset,
} => Some((node.borrow(), operation_offset)),
Self::AtNodeMut {
node,
operation_offset,
} => Some((node.into(), operation_offset)),
Self::Inactive(..) => None,
}
}
}
impl<'a, I: ItemEntry> CursorState<'a, I, ReadWrite> {
fn into_node_mut(self) -> Option<(&'a mut XNode<I>, u8)> {
match self {
Self::AtNodeMut {
node,
operation_offset,
} => Some((node.into(), operation_offset)),
Self::Inactive(..) | Self::AtNode { .. } => None,
}
}
fn into_node_maybe_mut(self) -> Option<(NodeMaybeMut<'a, I>, u8)> {
match self {
Self::AtNode {
node,
operation_offset,
} => Some((NodeMaybeMut::Shared(node.borrow()), operation_offset)),
Self::AtNodeMut {
node,
operation_offset,
} => Some((NodeMaybeMut::Exclusive(node.into()), operation_offset)),
Self::Inactive(..) => None,
}
}
}
impl<'a, I: ItemEntry> CursorState<'a, I, ReadOnly> {
fn as_node(&self) -> Option<(&'a XNode<I>, u8)> {
match self {
Self::AtNode {
node,
operation_offset,
} => Some((node.borrow(), *operation_offset)),
Self::Inactive(..) | Self::AtNodeMut { .. } => None,
}
}
}
impl<'a, I: ItemEntry> CursorState<'a, I, ReadWrite> {
fn as_node(&self) -> Option<(&XNode<I>, u8)> {
match self {
Self::AtNode {
node,
operation_offset,
} => Some((node.borrow(), *operation_offset)),
Self::AtNodeMut {
node,
operation_offset,
} => Some((node.borrow(), *operation_offset)),
Self::Inactive(..) => None,
}
}
fn as_node_mut(&mut self) -> Option<(&mut XNode<I>, u8)> {
match self {
Self::AtNodeMut {
node,
operation_offset,
} => Some((node.borrow_mut(), *operation_offset)),
Self::Inactive(..) | Self::AtNode { .. } => None,
}
}
}
impl<'a, I: ItemEntry, O: Operation> CursorState<'a, I, O> {
fn is_at_node(&self) -> bool {
match self {
Self::AtNode { .. } | Self::AtNodeMut { .. } => true,
Self::Inactive(..) => false,
}
}
fn is_leaf(&self) -> bool {
match self {
Self::AtNodeMut { node, .. } => node.borrow().is_leaf(),
Self::AtNode { node, .. } => node.borrow().is_leaf(),
Self::Inactive(..) => false,
}
}
}
impl<'a, I: ItemEntry> CursorState<'a, I, ReadWrite> {
fn is_at_node_mut(&self) -> bool {
match self {
Self::AtNodeMut { .. } => true,
Self::Inactive(..) | Self::AtNode { .. } => false,
}
}
}
/// A `Cursor` can traverse in the [`XArray`] by setting or increasing the target index and can
/// perform read-only operations to the target item represented by the target index.
///
/// `Cursor`s act like shared references, so multiple cursors are allowed to operate on a single
/// `XArray` at the same time.
///
/// The typical way to obtain a `Cursor` instance is to call [`XArray::cursor`].
pub struct Cursor<'a, I, M>
where
I: ItemEntry,
M: Into<XMark>,
{
/// The `XArray` where the cursor locates.
xa: &'a XArray<I, M>,
/// The target index of the cursor.
index: u64,
/// The state of the cursor.
state: CursorState<'a, I, ReadOnly>,
/// Ancestors of the leaf node (exclusive), starting from the root node and going down.
ancestors: SmallVec<[&'a XNode<I>; MAX_HEIGHT]>,
}
impl<'a, I: ItemEntry, M: Into<XMark>> Cursor<'a, I, M> {
/// Creates a `Cursor` to perform read-related operations in the `XArray`.
pub(super) fn new(xa: &'a XArray<I, M>, index: u64) -> Self {
let mut cursor = Self {
xa,
index,
state: CursorState::default(),
ancestors: SmallVec::new(),
};
cursor.traverse_to_target();
cursor
}
/// Resets the target index to `index`.
///
/// Once set, the cursor will be positioned on the corresponding leaf node, if the leaf node
/// exists.
pub fn reset_to(&mut self, index: u64) {
self.reset();
self.index = index;
self.traverse_to_target();
}
/// Returns the target index of the cursor.
pub fn index(&self) -> u64 {
self.index
}
/// Increases the target index of the cursor by one.
///
/// Once increased, the cursor will be positioned on the corresponding leaf node, if the leaf
/// node exists.
pub fn next(&mut self) {
self.index = self.index.checked_add(1).unwrap();
if !self.state.is_at_node() {
return;
}
let (mut current_node, mut operation_offset) =
core::mem::take(&mut self.state).into_node().unwrap();
operation_offset += 1;
while operation_offset == SLOT_SIZE as u8 {
let Some(parent_node) = self.ancestors.pop() else {
self.reset();
return;
};
operation_offset = current_node.offset_in_parent() + 1;
current_node = parent_node;
}
self.state.move_to(current_node, self.index);
self.continue_traverse_to_target();
}
/// Loads the item at the target index.
///
/// If the target item exists, this method will return a [`ItemEntry::Ref`] that acts exactly
/// like a `&'a I` wrapped in `Some(_)`. Otherwises, it will return `None`.
pub fn load(&mut self) -> Option<I::Ref<'a>> {
self.traverse_to_target();
self.state
.as_node()
.and_then(|(node, off)| node.entry(off).as_item_ref())
}
/// Checks whether the target item is marked with the input `mark`.
///
/// If the target item does not exist, this method will also return false.
pub fn is_marked(&mut self, mark: M) -> bool {
self.traverse_to_target();
self.state
.as_node()
.map(|(node, off)| node.is_marked(off, mark.into().index()))
.unwrap_or(false)
}
/// Traverses from the root node to the leaf node according to the target index, if necessary
/// and possible.
///
/// This methold should be called before any read-only operations.
fn traverse_to_target(&mut self) {
if self.state.is_at_node() {
return;
}
let max_index = self.xa.max_index();
if max_index < self.index || max_index == 0 {
return;
}
let current_node = self.xa.head().as_node_ref().unwrap();
self.state.move_to(current_node, self.index);
self.continue_traverse_to_target();
}
/// Traverses from an interior node to the leaf node according to the target index, if
/// possible.
///
/// This is a helper function for internal use. Users should call
/// [`Cursor::traverse_to_target`] instead.
fn continue_traverse_to_target(&mut self) {
while !self.state.is_leaf() {
let (current_node, operation_offset) =
core::mem::take(&mut self.state).into_node().unwrap();
let operated_entry = current_node.entry(operation_offset);
if !operated_entry.is_node() {
self.reset();
return;
}
self.ancestors.push(current_node);
let new_node = operated_entry.as_node_ref().unwrap();
self.state.move_to(new_node, self.index);
}
}
/// Resets the cursor to the inactive state.
fn reset(&mut self) {
self.state = CursorState::default();
self.ancestors.clear();
}
}
/// A dormant mutable reference to a value of `XNode<I>`.
///
/// While the mutable reference is dormant, a subtree of the node can continue to be operated. When
/// the operation is finished (i.e., all references to the subtree are dead), `awaken` or
/// `awaken_modified` (depending on whether the marks on the subtree have been updated) can be
/// called to restore the original reference to the node.
struct NodeMutRef<'a, I>
where
I: ItemEntry,
{
inner: DormantMutRef<'a, XNode<I>>,
}
impl<'a, I: ItemEntry> NodeMutRef<'a, I> {
/// Creates a dormant reference for the given `node` and gets a mutable reference for the
/// operation on a subtree of the node (specified in `operation_offset`).
fn new(node: &'a mut XNode<I>, operation_offset: u8) -> (&'a mut XEntry<I>, NodeMutRef<'a, I>) {
let (node, inner) = DormantMutRef::new(node);
(node.entry_mut(operation_offset), NodeMutRef { inner })
}
/// Restores the original node reference after the operation on the subtree is finished.
///
/// This method does not update the mark corresponding to the subtree, so it should only be
/// used when the marks on the subtree are not changed.
///
/// # Safety
///
/// Users must ensure all references to the subtree are now dead.
unsafe fn awaken(self) -> &'a mut XNode<I> {
// SAFETY: The safety requirements of the method ensure that the original reference and all
// its derived references are dead.
unsafe { self.inner.awaken() }
}
/// Restores the original node reference after the operation on the subtree is finished and
/// updates the mark corresponding to the subtree.
///
/// The `operation_offset` in [`NodeMutRef::new`] is not stored, so users must call this method
/// with the `last_index` to identify the subtree on which the marks are changed.
///
/// # Safety
///
/// Users must ensure all references to the subtree are now dead.
unsafe fn awaken_modified(self, last_index: u64) -> (&'a mut XNode<I>, bool) {
// SAFETY: The safety requirements of the method ensure that the original reference and all
// its derived references are dead.
let node = unsafe { self.inner.awaken() };
let changed = node.update_mark(node.height().height_offset(last_index));
(node, changed)
}
}
/// A `CursorMut` can traverse in the [`XArray`] by setting or increasing the target index and can
/// perform read-write operations to the target item represented by the target index.
///
/// `CursorMut`s act like exclusive references, so multiple cursors are not allowed to operate on a
/// single `XArray` at the same time.
///
/// The typical way to obtain a `CursorMut` instance is to call [`XArray::cursor_mut`].
///
/// **Features for COW (Copy-On-Write).** Due to COW, multiple `XArray`s can share the same piece
/// of data. As a result, `CursorMut` does not always have exclusive access to the items stored in
/// the `XArray`. However, just before performing the modification, `CursorMut` will create
/// exclusive copies by cloning shared items, which guarantees the isolation of data stored in
/// different `XArray`s.
pub struct CursorMut<'a, I, M>
where
I: ItemEntry,
M: Into<XMark>,
{
/// The `XArray` where the cursor locates.
xa: DormantMutRef<'a, XArray<I, M>>,
/// The target index of the cursor.
index: u64,
/// The state of the cursor.
state: CursorState<'a, I, ReadWrite>,
/// Ancestors of the leaf node (exclusive), starting from the root node and going down, until
/// the first node which is shared in multiple `XArray`s.
mut_ancestors: SmallVec<[NodeMutRef<'a, I>; MAX_HEIGHT]>,
/// Ancestors of the leaf node (exclusive), but only containing the nodes which are shared in
/// multiple `XArray`s, from the first one and going down.
ancestors: SmallVec<[&'a XNode<I>; MAX_HEIGHT]>,
}
impl<'a, I: ItemEntry, M: Into<XMark>> CursorMut<'a, I, M> {
/// Create a `CursorMut` to perform read- and write-related operations in the `XArray`.
pub(super) fn new(xa: &'a mut XArray<I, M>, index: u64) -> Self {
let mut cursor = Self {
xa: DormantMutRef::new(xa).1,
index,
state: CursorState::default(),
mut_ancestors: SmallVec::new(),
ancestors: SmallVec::new(),
};
cursor.traverse_to_target();
cursor
}
/// Resets the target index to `index`.
///
/// Once set, the cursor will be positioned on the corresponding leaf node, if the leaf node
/// exists.
pub fn reset_to(&mut self, index: u64) {
self.reset();
self.index = index;
self.traverse_to_target();
}
/// Returns the target index of the cursor.
pub fn index(&self) -> u64 {
self.index
}
/// Increases the target index of the cursor by one.
///
/// Once increased, the cursor will be positioned on the corresponding leaf node, if the leaf
/// node exists.
pub fn next(&mut self) {
self.index = self.index.checked_add(1).unwrap();
if !self.state.is_at_node() {
return;
}
let (mut current_node, mut operation_offset) = core::mem::take(&mut self.state)
.into_node_maybe_mut()
.unwrap();
operation_offset += 1;
while operation_offset == SLOT_SIZE as u8 {
let offset_in_parent = current_node.offset_in_parent();
drop(current_node);
let parent_node = if let Some(node) = self.ancestors.pop() {
NodeMaybeMut::Shared(node)
} else if let Some(node) = self.mut_ancestors.pop() {
// SAFETY: All references derived from the tail node in `self.mut_ancestors` live
// in `self.ancestors` and `self.state`, which has already been reset.
NodeMaybeMut::Exclusive(unsafe { node.awaken_modified(self.index - 1).0 })
} else {
self.reset();
return;
};
operation_offset = offset_in_parent + 1;
current_node = parent_node;
}
self.state.move_to_maybe_mut(current_node, self.index);
self.continue_traverse_to_target();
}
/// Loads the item at the target index.
///
/// If the target item exists, this method will return a [`ItemEntry::Ref`] that acts exactly
/// like a `&'_ I` wrapped in `Some(_)`. Otherwises, it will return `None`.
pub fn load(&mut self) -> Option<I::Ref<'_>> {
self.traverse_to_target();
self.state
.as_node()
.and_then(|(node, off)| node.entry(off).as_item_ref())
}
/// Checks whether the target item is marked with the input `mark`.
///
/// If the target item does not exist, this method will also return false.
pub fn is_marked(&mut self, mark: M) -> bool {
self.traverse_to_target();
self.state
.as_node()
.map(|(node, off)| node.is_marked(off, mark.into().index()))
.unwrap_or(false)
}
/// Stores a new `item` at the target index, and returns the old item if it previously exists.
pub fn store(&mut self, item: I) -> Option<I> {
self.expand_and_traverse_to_target();
self.state
.as_node_mut()
.and_then(|(node, off)| node.set_entry(off, XEntry::from_item(item)).into_item())
}
/// Removes the item at the target index, and returns the removed item if it previously exists.
pub fn remove(&mut self) -> Option<I> {
self.ensure_exclusive_before_modification();
self.state
.as_node_mut()
.and_then(|(node, off)| node.set_entry(off, XEntry::EMPTY).into_item())
}
/// Sets the input `mark` for the item at the target index if the target item exists, otherwise
/// returns an error.
//
// The marks on the ancestors of the leaf node also need to be updated, which will be done
// later in `NodeMutRef::awaken_modified`.
pub fn set_mark(&mut self, mark: M) -> Result<(), ()> {
self.ensure_exclusive_before_modification();
self.state
.as_node_mut()
.filter(|(node, off)| node.entry(*off).is_item())
.map(|(node, off)| node.set_mark(off, mark.into().index()))
.ok_or(())
}
/// Unsets the input `mark` for the item at the target index if the target item exists,
/// otherwise returns an error.
//
// The marks on the ancestors of the leaf node also need to be updated, which will be done
// later in `NodeMutRef::awaken_modified`.
pub fn unset_mark(&mut self, mark: M) -> Result<(), ()> {
self.ensure_exclusive_before_modification();
self.state
.as_node_mut()
.filter(|(node, off)| node.entry(*off).is_item())
.map(|(node, off)| node.unset_mark(off, mark.into().index()))
.ok_or(())
}
/// Traverses from the root node to the leaf node according to the target index, without
/// creating new nodes, if necessary and possible.
///
/// This method should be called before any read-only operations.
fn traverse_to_target(&mut self) {
if self.state.is_at_node() {
return;
}
// SAFETY: The cursor is inactive. There are no alive references derived from the value of
// `&mut XArray<I, M>`.
let xa = unsafe { self.xa.reborrow() };
let max_index = xa.max_index();
if max_index < self.index || max_index == 0 {
return;
}
let current_node = xa.head_mut().as_node_maybe_mut().unwrap();
self.state.move_to_maybe_mut(current_node, self.index);
self.continue_traverse_to_target();
}
/// Traverses from the root node to the leaf node according to the target index, potentially
/// with creating new nodes, if necessary.
///
/// This method should be called before any create-if-not-exist operations.
fn expand_and_traverse_to_target(&mut self) {
if self.state.is_at_node() {
self.ensure_exclusive_before_modification();
return;
}
let head = {
// SAFETY: The cursor is inactive. There are no alive references derived from the value
// of `&mut XArray<I, M>`.
let xa = unsafe { self.xa.reborrow() };
xa.reserve(self.index);
xa.head_mut().as_node_mut_or_cow().unwrap()
};
self.state.move_to_mut(head, self.index);
self.exclusively_traverse_to_target();
}
/// Ensures the exclusive access to the leaf node by copying data when necessary.
///
/// This method should be called before any modify-if-exist operations.
fn ensure_exclusive_before_modification(&mut self) {
if self.state.is_at_node_mut() {
return;
}
self.state = CursorState::default();
self.ancestors.clear();
let node = match self.mut_ancestors.pop() {
// SAFETY: All references derived from the tail node in `self.mut_ancestors` live in
// `self.ancestors` and `self.state`, which has already been reset.
Some(node) => unsafe { node.awaken() },
None => {
// SAFETY: All references derived from `self.xa` live in `self.mut_ancestors`,
// `self.ancestors`, and `self.state`. All of them have already been cleared.
let xa = unsafe { self.xa.reborrow() };
let head = xa.head_mut();
if !head.is_node() {
return;
}
head.as_node_mut_or_cow().unwrap()
}
};
self.state.move_to_mut(node, self.index);
self.exclusively_traverse_to_target();
}
/// Traverses from an interior node to the leaf node according to the target index, without
/// creating new nodes, if possible.
///
/// This is a helper function for internal use. Users should call
/// [`CursorMut::traverse_to_target`] instead.
fn continue_traverse_to_target(&mut self) {
while !self.state.is_leaf() {
let (current_node, operation_offset) = core::mem::take(&mut self.state)
.into_node_maybe_mut()
.unwrap();
let next_node = match current_node {
NodeMaybeMut::Shared(node) => {
let operated_entry = node.entry(operation_offset);
if !operated_entry.is_node() {
self.reset();
return;
}
self.ancestors.push(node);
NodeMaybeMut::Shared(operated_entry.as_node_ref().unwrap())
}
NodeMaybeMut::Exclusive(node) => {
let (operated_entry, dormant_node) = NodeMutRef::new(node, operation_offset);
if !operated_entry.is_node() {
self.reset();
return;
}
self.mut_ancestors.push(dormant_node);
operated_entry.as_node_maybe_mut().unwrap()
}
};
self.state.move_to_maybe_mut(next_node, self.index);
}
}
/// Traverses from an interior node to the leaf node according to the target index, potentially
/// with creating new nodes.
///
/// This is a helper function for internal use. Users should call
/// [`CursorMut::expand_and_traverse_to_target`] or
/// [`CursorMut::ensure_exclusive_before_modification`] instead.
fn exclusively_traverse_to_target(&mut self) {
while !self.state.is_leaf() {
let (current_node, operation_offset) =
core::mem::take(&mut self.state).into_node_mut().unwrap();
if current_node.entry(operation_offset).is_null() {
let new_node = XNode::new(current_node.height().go_leaf(), operation_offset);
let new_entry = XEntry::from_node(new_node);
current_node.set_entry(operation_offset, new_entry);
}
let (operated_entry, dormant_node) = NodeMutRef::new(current_node, operation_offset);
self.mut_ancestors.push(dormant_node);
let next_node = operated_entry.as_node_mut_or_cow().unwrap();
self.state.move_to_mut(next_node, self.index)
}
}
/// Updates marks on ancestors if necessary and resets the cursor to the inactive state.
fn reset(&mut self) {
self.state = CursorState::default();
self.ancestors.clear();
while let Some(node) = self.mut_ancestors.pop() {
// SAFETY: All references derived from the node in `self.mut_ancestors` live in the
// following part of `self.mut_ancestors`, `self.ancestors`, and `self.state`, which
// has already been cleared.
let (_, changed) = unsafe { node.awaken_modified(self.index) };
if !changed {
self.mut_ancestors.clear();
break;
}
}
}
}
impl<'a, I: ItemEntry, M: Into<XMark>> Drop for CursorMut<'a, I, M> {
fn drop(&mut self) {
// This updates marks on ancestors if necessary.
self.reset();
}
}