1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
// SPDX-License-Identifier: MPL-2.0

// FIXME: the `intrusive_adapter` macro will generate methods without docs.
// So we temporary allow missing_docs for this module.
#![allow(missing_docs)]
#![allow(dead_code)]

use core::cell::UnsafeCell;

use intrusive_collections::{intrusive_adapter, LinkedListAtomicLink};

use super::{
    add_task,
    priority::Priority,
    processor::{current_task, schedule},
};
pub(crate) use crate::arch::task::{context_switch, TaskContext};
use crate::{
    cpu::CpuSet,
    mm::{kspace::KERNEL_PAGE_TABLE, FrameAllocOptions, PageFlags, Segment, PAGE_SIZE},
    prelude::*,
    sync::{SpinLock, SpinLockGuard},
    user::UserSpace,
};

pub const KERNEL_STACK_SIZE: usize = PAGE_SIZE * 64;

/// Trait for manipulating the task context.
pub trait TaskContextApi {
    /// Sets instruction pointer
    fn set_instruction_pointer(&mut self, ip: usize);

    /// Gets instruction pointer
    fn instruction_pointer(&self) -> usize;

    /// Sets stack pointer
    fn set_stack_pointer(&mut self, sp: usize);

    /// Gets stack pointer
    fn stack_pointer(&self) -> usize;
}

pub struct KernelStack {
    segment: Segment,
    has_guard_page: bool,
}

impl KernelStack {
    pub fn new() -> Result<Self> {
        Ok(Self {
            segment: FrameAllocOptions::new(KERNEL_STACK_SIZE / PAGE_SIZE).alloc_contiguous()?,
            has_guard_page: false,
        })
    }

    /// Generates a kernel stack with a guard page.
    /// An additional page is allocated and be regarded as a guard page, which should not be accessed.  
    pub fn new_with_guard_page() -> Result<Self> {
        let stack_segment =
            FrameAllocOptions::new(KERNEL_STACK_SIZE / PAGE_SIZE + 1).alloc_contiguous()?;
        // FIXME: modifying the the linear mapping is bad.
        let page_table = KERNEL_PAGE_TABLE.get().unwrap();
        let guard_page_vaddr = {
            let guard_page_paddr = stack_segment.start_paddr();
            crate::mm::paddr_to_vaddr(guard_page_paddr)
        };
        // SAFETY: the segment allocated is not used by others so we can protect it.
        unsafe {
            page_table
                .protect(&(guard_page_vaddr..guard_page_vaddr + PAGE_SIZE), |p| {
                    p.flags -= PageFlags::RW
                })
                .unwrap();
        }
        Ok(Self {
            segment: stack_segment,
            has_guard_page: true,
        })
    }

    pub fn end_paddr(&self) -> Paddr {
        self.segment.end_paddr()
    }
}

impl Drop for KernelStack {
    fn drop(&mut self) {
        if self.has_guard_page {
            // FIXME: modifying the the linear mapping is bad.
            let page_table = KERNEL_PAGE_TABLE.get().unwrap();
            let guard_page_vaddr = {
                let guard_page_paddr = self.segment.start_paddr();
                crate::mm::paddr_to_vaddr(guard_page_paddr)
            };
            // SAFETY: the segment allocated is not used by others so we can protect it.
            unsafe {
                page_table
                    .protect(&(guard_page_vaddr..guard_page_vaddr + PAGE_SIZE), |p| {
                        p.flags |= PageFlags::RW
                    })
                    .unwrap();
            }
        }
    }
}

/// A task that executes a function to the end.
///
/// Each task is associated with per-task data and an optional user space.
/// If having a user space, the task can switch to the user space to
/// execute user code. Multiple tasks can share a single user space.
pub struct Task {
    func: Box<dyn Fn() + Send + Sync>,
    data: Box<dyn Any + Send + Sync>,
    user_space: Option<Arc<UserSpace>>,
    task_inner: SpinLock<TaskInner>,
    ctx: UnsafeCell<TaskContext>,
    /// kernel stack, note that the top is SyscallFrame/TrapFrame
    kstack: KernelStack,
    link: LinkedListAtomicLink,
    priority: Priority,
    // TODO: add multiprocessor support
    cpu_affinity: CpuSet,
}

// TaskAdapter struct is implemented for building relationships between doubly linked list and Task struct
intrusive_adapter!(pub TaskAdapter = Arc<Task>: Task { link: LinkedListAtomicLink });

// SAFETY: `UnsafeCell<TaskContext>` is not `Sync`. However, we only use it in `schedule()` where
// we have exclusive access to the field.
unsafe impl Sync for Task {}

pub(crate) struct TaskInner {
    pub task_status: TaskStatus,
}

impl Task {
    /// Gets the current task.
    pub fn current() -> Arc<Task> {
        current_task().unwrap()
    }

    /// Gets inner
    pub(crate) fn inner_exclusive_access(&self) -> SpinLockGuard<TaskInner> {
        self.task_inner.lock_irq_disabled()
    }

    pub(super) fn ctx(&self) -> &UnsafeCell<TaskContext> {
        &self.ctx
    }

    /// Yields execution so that another task may be scheduled.
    ///
    /// Note that this method cannot be simply named "yield" as the name is
    /// a Rust keyword.
    pub fn yield_now() {
        schedule();
    }

    /// Runs the task.
    pub fn run(self: &Arc<Self>) {
        add_task(self.clone());
        schedule();
    }

    /// Returns the task status.
    pub fn status(&self) -> TaskStatus {
        self.task_inner.lock_irq_disabled().task_status
    }

    /// Returns the task data.
    pub fn data(&self) -> &Box<dyn Any + Send + Sync> {
        &self.data
    }

    /// Returns the user space of this task, if it has.
    pub fn user_space(&self) -> Option<&Arc<UserSpace>> {
        if self.user_space.is_some() {
            Some(self.user_space.as_ref().unwrap())
        } else {
            None
        }
    }

    /// Exits the current task.
    ///
    /// The task `self` must be the task that is currently running.
    ///
    /// **NOTE:** If there is anything left on the stack, it will be forgotten. This behavior may
    /// lead to resource leakage.
    fn exit(self: Arc<Self>) -> ! {
        self.inner_exclusive_access().task_status = TaskStatus::Exited;

        // `current_task()` still holds a strong reference, so nothing is destroyed at this point,
        // neither is the kernel stack.
        drop(self);

        schedule();
        unreachable!()
    }

    /// Checks if the task has a real-time priority.
    pub fn is_real_time(&self) -> bool {
        self.priority.is_real_time()
    }
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
/// The status of a task.
pub enum TaskStatus {
    /// The task is runnable.
    Runnable,
    /// The task is running in the foreground but will sleep when it goes to the background.
    Sleepy,
    /// The task is sleeping in the background.
    Sleeping,
    /// The task has exited.
    Exited,
}

/// Options to create or spawn a new task.
pub struct TaskOptions {
    func: Option<Box<dyn Fn() + Send + Sync>>,
    data: Option<Box<dyn Any + Send + Sync>>,
    user_space: Option<Arc<UserSpace>>,
    priority: Priority,
    cpu_affinity: CpuSet,
}

impl TaskOptions {
    /// Creates a set of options for a task.
    pub fn new<F>(func: F) -> Self
    where
        F: Fn() + Send + Sync + 'static,
    {
        let cpu_affinity = CpuSet::new_full();
        Self {
            func: Some(Box::new(func)),
            data: None,
            user_space: None,
            priority: Priority::normal(),
            cpu_affinity,
        }
    }

    /// Sets the function that represents the entry point of the task.
    pub fn func<F>(mut self, func: F) -> Self
    where
        F: Fn() + Send + Sync + 'static,
    {
        self.func = Some(Box::new(func));
        self
    }

    /// Sets the data associated with the task.
    pub fn data<T>(mut self, data: T) -> Self
    where
        T: Any + Send + Sync,
    {
        self.data = Some(Box::new(data));
        self
    }

    /// Sets the user space associated with the task.
    pub fn user_space(mut self, user_space: Option<Arc<UserSpace>>) -> Self {
        self.user_space = user_space;
        self
    }

    /// Sets the priority of the task.
    pub fn priority(mut self, priority: Priority) -> Self {
        self.priority = priority;
        self
    }

    /// Sets the CPU affinity mask for the task.
    ///
    /// The `cpu_affinity` parameter represents
    /// the desired set of CPUs to run the task on.
    pub fn cpu_affinity(mut self, cpu_affinity: CpuSet) -> Self {
        self.cpu_affinity = cpu_affinity;
        self
    }

    /// Builds a new task without running it immediately.
    pub fn build(self) -> Result<Arc<Task>> {
        /// all task will entering this function
        /// this function is mean to executing the task_fn in Task
        extern "C" fn kernel_task_entry() {
            let current_task = current_task()
                .expect("no current task, it should have current task in kernel task entry");
            current_task.func.call(());
            current_task.exit();
        }

        let mut new_task = Task {
            func: self.func.unwrap(),
            data: self.data.unwrap(),
            user_space: self.user_space,
            task_inner: SpinLock::new(TaskInner {
                task_status: TaskStatus::Runnable,
            }),
            ctx: UnsafeCell::new(TaskContext::default()),
            kstack: KernelStack::new_with_guard_page()?,
            link: LinkedListAtomicLink::new(),
            priority: self.priority,
            cpu_affinity: self.cpu_affinity,
        };

        let ctx = new_task.ctx.get_mut();
        ctx.set_instruction_pointer(kernel_task_entry as usize);
        // We should reserve space for the return address in the stack, otherwise
        // we will write across the page boundary due to the implementation of
        // the context switch.
        //
        // According to the System V AMD64 ABI, the stack pointer should be aligned
        // to at least 16 bytes. And a larger alignment is needed if larger arguments
        // are passed to the function. The `kernel_task_entry` function does not
        // have any arguments, so we only need to align the stack pointer to 16 bytes.
        ctx.set_stack_pointer(crate::mm::paddr_to_vaddr(new_task.kstack.end_paddr() - 16));

        Ok(Arc::new(new_task))
    }

    /// Builds a new task and run it immediately.
    pub fn spawn(self) -> Result<Arc<Task>> {
        let task = self.build()?;
        task.run();
        Ok(task)
    }
}

#[cfg(ktest)]
mod test {
    use crate::prelude::*;

    #[ktest]
    fn create_task() {
        let task = || {
            assert_eq!(1, 1);
        };
        let task_option = crate::task::TaskOptions::new(task)
            .data(())
            .build()
            .unwrap();
        task_option.run();
    }

    #[ktest]
    fn spawn_task() {
        let task = || {
            assert_eq!(1, 1);
        };
        let _ = crate::task::TaskOptions::new(task).data(()).spawn();
    }
}