1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
// SPDX-License-Identifier: MPL-2.0

#![allow(dead_code)]

use alloc::sync::Arc;
use core::{
    cell::RefCell,
    sync::atomic::{AtomicUsize, Ordering::Relaxed},
};

use super::{
    scheduler::{fetch_task, GLOBAL_SCHEDULER},
    task::{context_switch, TaskContext},
    Task, TaskStatus,
};
use crate::{cpu_local, CpuLocal};

pub struct Processor {
    current: Option<Arc<Task>>,
    /// A temporary variable used in [`switch_to_task`] to avoid dropping `current` while running
    /// as `current`.
    prev_task: Option<Arc<Task>>,
    idle_task_ctx: TaskContext,
}

impl Processor {
    pub const fn new() -> Self {
        Self {
            current: None,
            prev_task: None,
            idle_task_ctx: TaskContext::new(),
        }
    }
    fn get_idle_task_ctx_ptr(&mut self) -> *mut TaskContext {
        &mut self.idle_task_ctx as *mut _
    }
    pub fn take_current(&mut self) -> Option<Arc<Task>> {
        self.current.take()
    }
    pub fn current(&self) -> Option<Arc<Task>> {
        self.current.as_ref().map(Arc::clone)
    }
    pub fn set_current_task(&mut self, task: Arc<Task>) {
        self.current = Some(task.clone());
    }
}

cpu_local! {
    static PROCESSOR: RefCell<Processor> = RefCell::new(Processor::new());
}

pub fn take_current_task() -> Option<Arc<Task>> {
    CpuLocal::borrow_with(&PROCESSOR, |processor| {
        processor.borrow_mut().take_current()
    })
}

/// Retrieves the current task running on the processor.
pub fn current_task() -> Option<Arc<Task>> {
    CpuLocal::borrow_with(&PROCESSOR, |processor| processor.borrow().current())
}

pub(crate) fn get_idle_task_ctx_ptr() -> *mut TaskContext {
    CpuLocal::borrow_with(&PROCESSOR, |processor| {
        processor.borrow_mut().get_idle_task_ctx_ptr()
    })
}

/// Calls this function to switch to other task by using GLOBAL_SCHEDULER
pub fn schedule() {
    if let Some(task) = fetch_task() {
        switch_to_task(task);
    }
}

/// Preempts the `task`.
///
/// TODO: This interface of this method is error prone.
/// The method takes an argument for the current task to optimize its efficiency,
/// but the argument provided by the caller may not be the current task, really.
/// Thus, this method should be removed or reworked in the future.
pub fn preempt(task: &Arc<Task>) {
    // TODO: Refactor `preempt` and `schedule`
    // after the Atomic mode and `might_break` is enabled.
    let mut scheduler = GLOBAL_SCHEDULER.lock_irq_disabled();
    if !scheduler.should_preempt(task) {
        return;
    }
    let Some(next_task) = scheduler.dequeue() else {
        return;
    };
    drop(scheduler);
    switch_to_task(next_task);
}

/// Calls this function to switch to other task
///
/// if current task is none, then it will use the default task context and it will not return to this function again
///
/// if current task status is exit, then it will not add to the scheduler
///
/// before context switch, current task will switch to the next task
fn switch_to_task(next_task: Arc<Task>) {
    if !PREEMPT_COUNT.is_preemptive() {
        panic!(
            "Calling schedule() while holding {} locks",
            PREEMPT_COUNT.num_locks()
        );
    }

    let current_task_ctx_ptr = match current_task() {
        None => get_idle_task_ctx_ptr(),
        Some(current_task) => {
            let ctx_ptr = current_task.ctx().get();

            let mut task_inner = current_task.inner_exclusive_access();

            debug_assert_ne!(task_inner.task_status, TaskStatus::Sleeping);
            if task_inner.task_status == TaskStatus::Runnable {
                drop(task_inner);
                GLOBAL_SCHEDULER.lock_irq_disabled().enqueue(current_task);
            } else if task_inner.task_status == TaskStatus::Sleepy {
                task_inner.task_status = TaskStatus::Sleeping;
            }

            ctx_ptr
        }
    };

    let next_task_ctx_ptr = next_task.ctx().get().cast_const();

    if let Some(next_user_space) = next_task.user_space() {
        next_user_space.vm_space().activate();
    }

    // Change the current task to the next task.
    CpuLocal::borrow_with(&PROCESSOR, |processor| {
        let mut processor = processor.borrow_mut();

        // We cannot directly overwrite `current` at this point. Since we are running as `current`,
        // we must avoid dropping `current`. Otherwise, the kernel stack may be unmapped, leading
        // to soundness problems.
        let old_current = processor.current.replace(next_task);
        processor.prev_task = old_current;
    });

    // SAFETY:
    // 1. `ctx` is only used in `schedule()`. We have exclusive access to both the current task
    //    context and the next task context.
    // 2. The next task context is a valid task context.
    unsafe {
        // This function may not return, for example, when the current task exits. So make sure
        // that all variables on the stack can be forgotten without causing resource leakage.
        context_switch(current_task_ctx_ptr, next_task_ctx_ptr);
    }

    // Now it's fine to drop `prev_task`. However, we choose not to do this because it is not
    // always possible. For example, `context_switch` can switch directly to the entry point of the
    // next task. Not dropping is just fine because the only consequence is that we delay the drop
    // to the next task switching.
}

cpu_local! {
    static PREEMPT_COUNT: PreemptInfo = PreemptInfo::new();
}

/// Currently, ``PreemptInfo`` only holds the number of spin
/// locks held by the current CPU. When it has a non-zero value,
/// the CPU cannot call ``schedule()``.
struct PreemptInfo {
    num_locks: AtomicUsize,
}

impl PreemptInfo {
    const fn new() -> Self {
        Self {
            num_locks: AtomicUsize::new(0),
        }
    }

    fn increase_num_locks(&self) {
        self.num_locks.fetch_add(1, Relaxed);
    }

    fn decrease_num_locks(&self) {
        self.num_locks.fetch_sub(1, Relaxed);
    }

    fn is_preemptive(&self) -> bool {
        self.num_locks.load(Relaxed) == 0
    }

    fn num_locks(&self) -> usize {
        self.num_locks.load(Relaxed)
    }
}

/// A guard for disable preempt.
pub struct DisablePreemptGuard {
    // This private field prevents user from constructing values of this type directly.
    private: (),
}

impl !Send for DisablePreemptGuard {}

impl DisablePreemptGuard {
    fn new() -> Self {
        PREEMPT_COUNT.increase_num_locks();
        Self { private: () }
    }

    /// Transfer this guard to a new guard.
    /// This guard must be dropped after this function.
    pub fn transfer_to(&self) -> Self {
        disable_preempt()
    }
}

impl Drop for DisablePreemptGuard {
    fn drop(&mut self) {
        PREEMPT_COUNT.decrease_num_locks();
    }
}

/// Disables preemption.
#[must_use]
pub fn disable_preempt() -> DisablePreemptGuard {
    DisablePreemptGuard::new()
}