1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
// SPDX-License-Identifier: MPL-2.0
use alloc::{collections::VecDeque, sync::Arc};
use core::sync::atomic::{AtomicBool, AtomicU32, Ordering};
use super::SpinLock;
use crate::task::{add_task, current_task, schedule, Task, TaskStatus};
// # Explanation on the memory orders
//
// ```
// [CPU 1 (the waker)] [CPU 2 (the waiter)]
// cond = true;
// wake_up();
// wait();
// if cond { /* .. */ }
// ```
//
// As soon as the waiter is woken up by the waker, it must see the true condition. This is
// trivially satisfied if `wake_up()` and `wait()` synchronize with a lock. But if they synchronize
// with an atomic variable, `wake_up()` must access the variable with `Ordering::Release` and
// `wait()` must access the variable with `Ordering::Acquire`.
//
// Examples of `wake_up()`:
// - `WaitQueue::wake_one()`
// - `WaitQueue::wake_all()`
// - `Waker::wake_up()`
//
// Examples of `wait()`:
// - `WaitQueue::wait_until()`
// - `Waiter::wait()`
// - `Waiter::drop()`
//
// Note that dropping a waiter must be treated as a `wait()` with zero timeout, because we need to
// make sure that the wake event isn't lost in this case.
/// A wait queue.
///
/// One may wait on a wait queue to put its executing thread to sleep.
/// Multiple threads may be the waiters of a wait queue.
/// Other threads may invoke the `wake`-family methods of a wait queue to
/// wake up one or many waiting threads.
pub struct WaitQueue {
// A copy of `wakers.len()`, used for the lock-free fast path in `wake_one` and `wake_all`.
num_wakers: AtomicU32,
wakers: SpinLock<VecDeque<Arc<Waker>>>,
}
impl WaitQueue {
/// Creates a new, empty wait queue.
pub const fn new() -> Self {
WaitQueue {
num_wakers: AtomicU32::new(0),
wakers: SpinLock::new(VecDeque::new()),
}
}
/// Waits until some condition is met.
///
/// This method takes a closure that tests a user-given condition.
/// The method only returns if the condition returns `Some(_)`.
/// A waker thread should first make the condition `Some(_)`, then invoke the
/// `wake`-family method. This ordering is important to ensure that waiter
/// threads do not lose any wakeup notifications.
///
/// By taking a condition closure, this wait-wakeup mechanism becomes
/// more efficient and robust.
pub fn wait_until<F, R>(&self, mut cond: F) -> R
where
F: FnMut() -> Option<R>,
{
if let Some(res) = cond() {
return res;
}
let (waiter, _) = Waiter::new_pair();
self.wait_until_or_cancelled(cond, waiter, || false)
.unwrap()
}
/// Waits until some condition is met or the cancel condition becomes true.
///
/// This method will return `Some(_)` if the condition returns `Some(_)`, and will return
/// the condition test result regardless what it is when the cancel condition becomes true.
#[doc(hidden)]
pub fn wait_until_or_cancelled<F, R, FCancel>(
&self,
mut cond: F,
waiter: Waiter,
cancel_cond: FCancel,
) -> Option<R>
where
F: FnMut() -> Option<R>,
FCancel: Fn() -> bool,
{
let waker = waiter.waker();
loop {
// Enqueue the waker before checking `cond()` to avoid races
self.enqueue(waker.clone());
if let Some(res) = cond() {
return Some(res);
};
if cancel_cond() {
// Drop the waiter and check again to avoid missing a wake event.
drop(waiter);
return cond();
}
waiter.wait();
}
}
/// Wakes up one waiting thread, if there is one at the point of time when this method is
/// called, returning whether such a thread was woken up.
pub fn wake_one(&self) -> bool {
// Fast path
if self.is_empty() {
return false;
}
loop {
let mut wakers = self.wakers.lock_irq_disabled();
let Some(waker) = wakers.pop_front() else {
return false;
};
self.num_wakers.fetch_sub(1, Ordering::Release);
// Avoid holding lock when calling `wake_up`
drop(wakers);
if waker.wake_up() {
return true;
}
}
}
/// Wakes up all waiting threads, returning the number of threads that were woken up.
pub fn wake_all(&self) -> usize {
// Fast path
if self.is_empty() {
return 0;
}
let mut num_woken = 0;
loop {
let mut wakers = self.wakers.lock_irq_disabled();
let Some(waker) = wakers.pop_front() else {
break;
};
self.num_wakers.fetch_sub(1, Ordering::Release);
// Avoid holding lock when calling `wake_up`
drop(wakers);
if waker.wake_up() {
num_woken += 1;
}
}
num_woken
}
fn is_empty(&self) -> bool {
// On x86-64, this generates `mfence; mov`, which is exactly the right way to implement
// atomic loading with `Ordering::Release`. It performs much better than naively
// translating `fetch_add(0)` to `lock; xadd`.
self.num_wakers.fetch_add(0, Ordering::Release) == 0
}
fn enqueue(&self, waker: Arc<Waker>) {
let mut wakers = self.wakers.lock_irq_disabled();
wakers.push_back(waker);
self.num_wakers.fetch_add(1, Ordering::Acquire);
}
}
impl Default for WaitQueue {
fn default() -> Self {
Self::new()
}
}
/// A waiter that can put the current thread to sleep until it is woken up by the associated
/// [`Waker`].
///
/// By definition, a waiter belongs to the current thread, so it cannot be sent to another thread
/// and its reference cannot be shared between threads.
pub struct Waiter {
waker: Arc<Waker>,
}
impl !Send for Waiter {}
impl !Sync for Waiter {}
/// A waker that can wake up the associated [`Waiter`].
///
/// A waker can be created by calling [`Waiter::new_pair`]. This method creates an `Arc<Waker>` that can
/// be used across different threads.
pub struct Waker {
has_woken: AtomicBool,
task: Arc<Task>,
}
impl Waiter {
/// Creates a waiter and its associated [`Waker`].
pub fn new_pair() -> (Self, Arc<Waker>) {
let waker = Arc::new(Waker {
has_woken: AtomicBool::new(false),
task: current_task().unwrap(),
});
let waiter = Self {
waker: waker.clone(),
};
(waiter, waker)
}
/// Waits until the waiter is woken up by calling [`Waker::wake_up`] on the associated
/// [`Waker`].
///
/// This method returns immediately if the waiter has been woken since the end of the last call
/// to this method (or since the waiter was created, if this method has not been called
/// before). Otherwise, it puts the current thread to sleep until the waiter is woken up.
pub fn wait(&self) {
self.waker.do_wait();
}
/// Gets the associated [`Waker`] of the current waiter.
pub fn waker(&self) -> Arc<Waker> {
self.waker.clone()
}
}
impl Drop for Waiter {
fn drop(&mut self) {
// When dropping the waiter, we need to close the waker to ensure that if someone wants to
// wake up the waiter afterwards, they will perform a no-op.
self.waker.close();
}
}
impl Waker {
/// Wakes up the associated [`Waiter`].
///
/// This method returns `true` if the waiter is woken by this call. It returns `false` if the
/// waiter has already been woken by a previous call to the method, or if the waiter has been
/// dropped.
///
/// Note that if this method returns `true`, it implies that the wake event will be properly
/// delivered, _or_ that the waiter will be dropped after being woken. It's up to the caller to
/// handle the latter case properly to avoid missing the wake event.
pub fn wake_up(&self) -> bool {
if self.has_woken.swap(true, Ordering::Release) {
return false;
}
let mut task = self.task.inner_exclusive_access();
match task.task_status {
TaskStatus::Sleepy => {
task.task_status = TaskStatus::Runnable;
}
TaskStatus::Sleeping => {
task.task_status = TaskStatus::Runnable;
// Avoid holding the lock when doing `add_task`
drop(task);
add_task(self.task.clone());
}
_ => (),
}
true
}
fn do_wait(&self) {
while !self.has_woken.swap(false, Ordering::Acquire) {
let mut task = self.task.inner_exclusive_access();
// After holding the lock, check again to avoid races
if self.has_woken.swap(false, Ordering::Acquire) {
break;
}
task.task_status = TaskStatus::Sleepy;
drop(task);
schedule();
}
}
fn close(&self) {
// This must use `Ordering::Acquire`, although we do not care about the return value. See
// the memory order explanation at the top of the file for details.
let _ = self.has_woken.swap(true, Ordering::Acquire);
}
}
#[cfg(ktest)]
mod test {
use super::*;
use crate::{prelude::*, task::TaskOptions};
fn queue_wake<F>(wake: F)
where
F: Fn(&WaitQueue) + Sync + Send + 'static,
{
let queue = Arc::new(WaitQueue::new());
let queue_cloned = queue.clone();
let cond = Arc::new(AtomicBool::new(false));
let cond_cloned = cond.clone();
TaskOptions::new(move || {
Task::yield_now();
cond_cloned.store(true, Ordering::Relaxed);
wake(&*queue_cloned);
})
.data(())
.spawn()
.unwrap();
queue.wait_until(|| cond.load(Ordering::Relaxed).then_some(()));
assert!(cond.load(Ordering::Relaxed));
}
#[ktest]
fn queue_wake_one() {
queue_wake(|queue| {
queue.wake_one();
});
}
#[ktest]
fn queue_wake_all() {
queue_wake(|queue| {
queue.wake_all();
});
}
#[ktest]
fn waiter_wake_twice() {
let (_waiter, waker) = Waiter::new_pair();
assert!(waker.wake_up());
assert!(!waker.wake_up());
}
#[ktest]
fn waiter_wake_drop() {
let (waiter, waker) = Waiter::new_pair();
drop(waiter);
assert!(!waker.wake_up());
}
#[ktest]
fn waiter_wake_async() {
let (waiter, waker) = Waiter::new_pair();
let cond = Arc::new(AtomicBool::new(false));
let cond_cloned = cond.clone();
TaskOptions::new(move || {
Task::yield_now();
cond_cloned.store(true, Ordering::Relaxed);
assert!(waker.wake_up());
})
.data(())
.spawn()
.unwrap();
waiter.wait();
assert!(cond.load(Ordering::Relaxed));
}
#[ktest]
fn waiter_wake_reorder() {
let (waiter, waker) = Waiter::new_pair();
let cond = Arc::new(AtomicBool::new(false));
let cond_cloned = cond.clone();
let (waiter2, waker2) = Waiter::new_pair();
let cond2 = Arc::new(AtomicBool::new(false));
let cond2_cloned = cond2.clone();
TaskOptions::new(move || {
Task::yield_now();
cond2_cloned.store(true, Ordering::Relaxed);
assert!(waker2.wake_up());
Task::yield_now();
cond_cloned.store(true, Ordering::Relaxed);
assert!(waker.wake_up());
})
.data(())
.spawn()
.unwrap();
waiter.wait();
assert!(cond.load(Ordering::Relaxed));
waiter2.wait();
assert!(cond2.load(Ordering::Relaxed));
}
}