1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
// SPDX-License-Identifier: MPL-2.0
use core::ops::Range;
use spin::Once;
use super::{
io::UserSpace,
is_page_aligned,
kspace::KERNEL_PAGE_TABLE,
page_table::{PageTable, PageTableMode, UserMode},
CachePolicy, FrameVec, PageFlags, PageProperty, PagingConstsTrait, PrivilegedPageFlags,
VmReader, VmWriter, PAGE_SIZE,
};
use crate::{
arch::mm::{
current_page_table_paddr, tlb_flush_addr_range, tlb_flush_all_excluding_global,
PageTableEntry, PagingConsts,
},
cpu::CpuExceptionInfo,
mm::{
page_table::{Cursor, PageTableQueryResult as PtQr},
Frame, MAX_USERSPACE_VADDR,
},
prelude::*,
Error,
};
/// Virtual memory space.
///
/// A virtual memory space (`VmSpace`) can be created and assigned to a user space so that
/// the virtual memory of the user space can be manipulated safely. For example,
/// given an arbitrary user-space pointer, one can read and write the memory
/// location referred to by the user-space pointer without the risk of breaking the
/// memory safety of the kernel space.
///
/// A newly-created `VmSpace` is not backed by any physical memory pages.
/// To provide memory pages for a `VmSpace`, one can allocate and map
/// physical memory ([`Frame`]s) to the `VmSpace`.
///
/// A `VmSpace` can also attach a page fault handler, which will be invoked to handle
/// page faults generated from user space.
///
/// A `VmSpace` can also attach a page fault handler, which will be invoked to handle
/// page faults generated from user space.
#[allow(clippy::type_complexity)]
pub struct VmSpace {
pt: PageTable<UserMode>,
page_fault_handler: Once<fn(&VmSpace, &CpuExceptionInfo) -> core::result::Result<(), ()>>,
}
// Notes on TLB flushing:
//
// We currently assume that:
// 1. `VmSpace` _might_ be activated on the current CPU and the user memory _might_ be used
// immediately after we make changes to the page table entries. So we must invalidate the
// corresponding TLB caches accordingly.
// 2. `VmSpace` must _not_ be activated on another CPU. This assumption is trivial, since SMP
// support is not yet available. But we need to consider this situation in the future (TODO).
impl VmSpace {
/// Creates a new VM address space.
pub fn new() -> Self {
Self {
pt: KERNEL_PAGE_TABLE.get().unwrap().create_user_page_table(),
page_fault_handler: Once::new(),
}
}
/// Activates the page table.
pub(crate) fn activate(&self) {
self.pt.activate();
}
pub(crate) fn handle_page_fault(
&self,
info: &CpuExceptionInfo,
) -> core::result::Result<(), ()> {
if let Some(func) = self.page_fault_handler.get() {
return func(self, info);
}
Err(())
}
/// Registers the page fault handler in this `VmSpace`.
///
/// The page fault handler of a `VmSpace` can only be initialized once.
/// If it has been initialized before, calling this method will have no effect.
pub fn register_page_fault_handler(
&self,
func: fn(&VmSpace, &CpuExceptionInfo) -> core::result::Result<(), ()>,
) {
self.page_fault_handler.call_once(|| func);
}
/// Maps some physical memory pages into the VM space according to the given
/// options, returning the address where the mapping is created.
///
/// The ownership of the frames will be transferred to the `VmSpace`.
///
/// For more information, see [`VmMapOptions`].
pub fn map(&self, frames: FrameVec, options: &VmMapOptions) -> Result<Vaddr> {
if options.addr.is_none() {
return Err(Error::InvalidArgs);
}
let addr = options.addr.unwrap();
if addr % PAGE_SIZE != 0 {
return Err(Error::InvalidArgs);
}
let size = frames.nbytes();
let end = addr.checked_add(size).ok_or(Error::InvalidArgs)?;
let va_range = addr..end;
if !UserMode::covers(&va_range) {
return Err(Error::InvalidArgs);
}
let mut cursor = self.pt.cursor_mut(&va_range)?;
// If overwrite is forbidden, we should check if there are existing mappings
if !options.can_overwrite {
while let Some(qr) = cursor.next() {
if matches!(qr, PtQr::Mapped { .. }) {
return Err(Error::MapAlreadyMappedVaddr);
}
}
cursor.jump(va_range.start);
}
let prop = PageProperty {
flags: options.flags,
cache: CachePolicy::Writeback,
priv_flags: PrivilegedPageFlags::USER,
};
for frame in frames.into_iter() {
// SAFETY: mapping in the user space with `Frame` is safe.
unsafe {
cursor.map(frame.into(), prop);
}
}
drop(cursor);
tlb_flush_addr_range(&va_range);
Ok(addr)
}
/// Queries about a range of virtual memory.
/// You will get an iterator of `VmQueryResult` which contains the information of
/// each parts of the range.
pub fn query_range(&self, range: &Range<Vaddr>) -> Result<VmQueryIter> {
Ok(VmQueryIter {
cursor: self.pt.cursor(range)?,
})
}
/// Queries about the mapping information about a byte in virtual memory.
/// This is more handy than [`query_range`], but less efficient if you want
/// to query in a batch.
///
/// [`query_range`]: VmSpace::query_range
pub fn query(&self, vaddr: Vaddr) -> Result<Option<PageProperty>> {
if !(0..MAX_USERSPACE_VADDR).contains(&vaddr) {
return Err(Error::AccessDenied);
}
Ok(self.pt.query(vaddr).map(|(_pa, prop)| prop))
}
/// Unmaps the physical memory pages within the VM address range.
///
/// The range is allowed to contain gaps, where no physical memory pages
/// are mapped.
pub fn unmap(&self, range: &Range<Vaddr>) -> Result<()> {
if !is_page_aligned(range.start) || !is_page_aligned(range.end) {
return Err(Error::InvalidArgs);
}
if !UserMode::covers(range) {
return Err(Error::InvalidArgs);
}
// SAFETY: unmapping in the user space is safe.
unsafe {
self.pt.unmap(range)?;
}
tlb_flush_addr_range(range);
Ok(())
}
/// Clears all mappings
pub fn clear(&self) {
// SAFETY: unmapping user space is safe, and we don't care unmapping
// invalid ranges.
unsafe {
self.pt.unmap(&(0..MAX_USERSPACE_VADDR)).unwrap();
}
tlb_flush_all_excluding_global();
}
/// Updates the VM protection permissions within the VM address range.
///
/// If any of the page in the given range is not mapped, it is skipped.
/// The method panics when virtual address is not aligned to base page
/// size.
///
/// It is guarenteed that the operation is called once for each valid
/// page found in the range.
///
/// TODO: It returns error when invalid operations such as protect
/// partial huge page happens, and efforts are not reverted, leaving us
/// in a bad state.
pub fn protect(&self, range: &Range<Vaddr>, op: impl FnMut(&mut PageProperty)) -> Result<()> {
if !is_page_aligned(range.start) || !is_page_aligned(range.end) {
return Err(Error::InvalidArgs);
}
if !UserMode::covers(range) {
return Err(Error::InvalidArgs);
}
// SAFETY: protecting in the user space is safe.
unsafe {
self.pt.protect(range, op)?;
}
tlb_flush_addr_range(range);
Ok(())
}
/// Forks a new VM space with copy-on-write semantics.
///
/// Both the parent and the newly forked VM space will be marked as
/// read-only. And both the VM space will take handles to the same
/// physical memory pages.
pub fn fork_copy_on_write(&self) -> Self {
let page_fault_handler = {
let new_handler = Once::new();
if let Some(handler) = self.page_fault_handler.get() {
new_handler.call_once(|| *handler);
}
new_handler
};
let new_space = Self {
pt: self.pt.fork_copy_on_write(),
page_fault_handler,
};
tlb_flush_all_excluding_global();
new_space
}
/// Creates a reader to read data from the user space of the current task.
///
/// Returns `Err` if this `VmSpace` is not belonged to the user space of the current task
/// or the `vaddr` and `len` do not represent a user space memory range.
pub fn reader(&self, vaddr: Vaddr, len: usize) -> Result<VmReader<'_, UserSpace>> {
if current_page_table_paddr() != unsafe { self.pt.root_paddr() } {
return Err(Error::AccessDenied);
}
if vaddr.checked_add(len).unwrap_or(usize::MAX) > MAX_USERSPACE_VADDR {
return Err(Error::AccessDenied);
}
// SAFETY: As long as the current task owns user space, the page table of
// the current task will be activated during the execution of the current task.
// Since `VmReader` is neither `Sync` nor `Send`, it will not live longer than
// the current task. Hence, it is ensured that the correct page table
// is activated during the usage period of the `VmReader`.
Ok(unsafe { VmReader::<UserSpace>::from_user_space(vaddr as *const u8, len) })
}
/// Creates a writer to write data into the user space.
///
/// Returns `Err` if this `VmSpace` is not belonged to the user space of the current task
/// or the `vaddr` and `len` do not represent a user space memory range.
pub fn writer(&self, vaddr: Vaddr, len: usize) -> Result<VmWriter<'_, UserSpace>> {
if current_page_table_paddr() != unsafe { self.pt.root_paddr() } {
return Err(Error::AccessDenied);
}
if vaddr.checked_add(len).unwrap_or(usize::MAX) > MAX_USERSPACE_VADDR {
return Err(Error::AccessDenied);
}
// SAFETY: As long as the current task owns user space, the page table of
// the current task will be activated during the execution of the current task.
// Since `VmWriter` is neither `Sync` nor `Send`, it will not live longer than
// the current task. Hence, it is ensured that the correct page table
// is activated during the usage period of the `VmWriter`.
Ok(unsafe { VmWriter::<UserSpace>::from_user_space(vaddr as *mut u8, len) })
}
}
impl Default for VmSpace {
fn default() -> Self {
Self::new()
}
}
/// Options for mapping physical memory pages into a VM address space.
/// See [`VmSpace::map`].
#[derive(Clone, Debug)]
pub struct VmMapOptions {
/// Starting virtual address
addr: Option<Vaddr>,
/// Map align
align: usize,
/// Page permissions and status
flags: PageFlags,
/// Can overwrite
can_overwrite: bool,
}
impl VmMapOptions {
/// Creates the default options.
pub fn new() -> Self {
Self {
addr: None,
align: PagingConsts::BASE_PAGE_SIZE,
flags: PageFlags::empty(),
can_overwrite: false,
}
}
/// Sets the alignment of the address of the mapping.
///
/// The alignment must be a power-of-2 and greater than or equal to the
/// page size.
///
/// The default value of this option is the page size.
pub fn align(&mut self, align: usize) -> &mut Self {
self.align = align;
self
}
/// Sets the permissions of the mapping, which affects whether
/// the mapping can be read, written, or executed.
///
/// The default value of this option is read-only.
pub fn flags(&mut self, flags: PageFlags) -> &mut Self {
self.flags = flags;
self
}
/// Sets the address of the new mapping.
///
/// The default value of this option is `None`.
pub fn addr(&mut self, addr: Option<Vaddr>) -> &mut Self {
if addr.is_none() {
return self;
}
self.addr = Some(addr.unwrap());
self
}
/// Sets whether the mapping can overwrite any existing mappings.
///
/// If this option is `true`, then the address option must be `Some(_)`.
///
/// The default value of this option is `false`.
pub fn can_overwrite(&mut self, can_overwrite: bool) -> &mut Self {
self.can_overwrite = can_overwrite;
self
}
}
impl Default for VmMapOptions {
fn default() -> Self {
Self::new()
}
}
/// The iterator for querying over the VM space without modifying it.
pub struct VmQueryIter<'a> {
cursor: Cursor<'a, UserMode, PageTableEntry, PagingConsts>,
}
pub enum VmQueryResult {
NotMapped {
va: Vaddr,
len: usize,
},
Mapped {
va: Vaddr,
frame: Frame,
prop: PageProperty,
},
}
impl Iterator for VmQueryIter<'_> {
type Item = VmQueryResult;
fn next(&mut self) -> Option<Self::Item> {
self.cursor.next().map(|ptqr| match ptqr {
PtQr::NotMapped { va, len } => VmQueryResult::NotMapped { va, len },
PtQr::Mapped { va, page, prop } => VmQueryResult::Mapped {
va,
frame: page.try_into().unwrap(),
prop,
},
// It is not possible to map untyped memory in user space.
PtQr::MappedUntracked { .. } => unreachable!(),
})
}
}