1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
// SPDX-License-Identifier: MPL-2.0
#![allow(unused_variables)]
use core::marker::PhantomData;
use align_ext::AlignExt;
use inherit_methods_macro::inherit_methods;
use pod::Pod;
use crate::{
arch::mm::__memcpy_fallible,
mm::{
kspace::{KERNEL_BASE_VADDR, KERNEL_END_VADDR},
MAX_USERSPACE_VADDR,
},
prelude::*,
Error,
};
/// A trait that enables reading/writing data from/to a VM object,
/// e.g., [`VmSpace`], [`FrameVec`], and [`Frame`].
///
/// # Concurrency
///
/// The methods may be executed by multiple concurrent reader and writer
/// threads. In this case, if the results of concurrent reads or writes
/// desire predictability or atomicity, the users should add extra mechanism
/// for such properties.
///
/// [`VmSpace`]: crate::mm::VmSpace
/// [`FrameVec`]: crate::mm::FrameVec
/// [`Frame`]: crate::mm::Frame
pub trait VmIo: Send + Sync {
/// Reads a specified number of bytes at a specified offset into a given buffer.
///
/// # No short reads
///
/// On success, the output `buf` must be filled with the requested data
/// completely. If, for any reason, the requested data is only partially
/// available, then the method shall return an error.
fn read_bytes(&self, offset: usize, buf: &mut [u8]) -> Result<()>;
/// Reads a value of a specified type at a specified offset.
fn read_val<T: Pod>(&self, offset: usize) -> Result<T> {
let mut val = T::new_uninit();
self.read_bytes(offset, val.as_bytes_mut())?;
Ok(val)
}
/// Reads a slice of a specified type at a specified offset.
///
/// # No short reads
///
/// Similar to [`read_bytes`].
///
/// [`read_bytes`]: VmIo::read_bytes
fn read_slice<T: Pod>(&self, offset: usize, slice: &mut [T]) -> Result<()> {
let len_in_bytes = core::mem::size_of_val(slice);
let ptr = slice as *mut [T] as *mut u8;
// SAFETY: the slice can be transmuted to a writable byte slice since the elements
// are all Plain-Old-Data (Pod) types.
let buf = unsafe { core::slice::from_raw_parts_mut(ptr, len_in_bytes) };
self.read_bytes(offset, buf)
}
/// Writes a specified number of bytes from a given buffer at a specified offset.
///
/// # No short writes
///
/// On success, the input `buf` must be written to the VM object entirely.
/// If, for any reason, the input data can only be written partially,
/// then the method shall return an error.
fn write_bytes(&self, offset: usize, buf: &[u8]) -> Result<()>;
/// Writes a value of a specified type at a specified offset.
fn write_val<T: Pod>(&self, offset: usize, new_val: &T) -> Result<()> {
self.write_bytes(offset, new_val.as_bytes())?;
Ok(())
}
/// Writes a slice of a specified type at a specified offset.
///
/// # No short write
///
/// Similar to [`write_bytes`].
///
/// [`write_bytes`]: VmIo::write_bytes
fn write_slice<T: Pod>(&self, offset: usize, slice: &[T]) -> Result<()> {
let len_in_bytes = core::mem::size_of_val(slice);
let ptr = slice as *const [T] as *const u8;
// SAFETY: the slice can be transmuted to a readable byte slice since the elements
// are all Plain-Old-Data (Pod) types.
let buf = unsafe { core::slice::from_raw_parts(ptr, len_in_bytes) };
self.write_bytes(offset, buf)
}
/// Writes a sequence of values given by an iterator (`iter`) from the specified offset (`offset`).
///
/// The write process stops until the VM object does not have enough remaining space
/// or the iterator returns `None`. If any value is written, the function returns `Ok(nr_written)`,
/// where `nr_written` is the number of the written values.
///
/// The offset of every value written by this method is aligned to the `align`-byte boundary.
/// Naturally, when `align` equals to `0` or `1`, then the argument takes no effect:
/// the values will be written in the most compact way.
///
/// # Example
///
/// Initializes an VM object with the same value can be done easily with `write_values`.
///
/// ```
/// use core::iter::self;
///
/// let _nr_values = vm_obj.write_vals(0, iter::repeat(0_u32), 0).unwrap();
/// ```
///
/// # Panics
///
/// This method panics if `align` is greater than two,
/// but not a power of two, in release mode.
fn write_vals<'a, T: Pod + 'a, I: Iterator<Item = &'a T>>(
&self,
offset: usize,
iter: I,
align: usize,
) -> Result<usize> {
let mut nr_written = 0;
let (mut offset, item_size) = if (align >> 1) == 0 {
// align is 0 or 1
(offset, core::mem::size_of::<T>())
} else {
// align is more than 2
(
offset.align_up(align),
core::mem::size_of::<T>().align_up(align),
)
};
for item in iter {
match self.write_val(offset, item) {
Ok(_) => {
offset += item_size;
nr_written += 1;
}
Err(e) => {
if nr_written > 0 {
return Ok(nr_written);
}
return Err(e);
}
}
}
Ok(nr_written)
}
}
macro_rules! impl_vmio_pointer {
($typ:ty,$from:tt) => {
#[inherit_methods(from = $from)]
impl<T: VmIo> VmIo for $typ {
fn read_bytes(&self, offset: usize, buf: &mut [u8]) -> Result<()>;
fn read_val<F: Pod>(&self, offset: usize) -> Result<F>;
fn read_slice<F: Pod>(&self, offset: usize, slice: &mut [F]) -> Result<()>;
fn write_bytes(&self, offset: usize, buf: &[u8]) -> Result<()>;
fn write_val<F: Pod>(&self, offset: usize, new_val: &F) -> Result<()>;
fn write_slice<F: Pod>(&self, offset: usize, slice: &[F]) -> Result<()>;
}
};
}
impl_vmio_pointer!(&T, "(**self)");
impl_vmio_pointer!(&mut T, "(**self)");
impl_vmio_pointer!(Box<T>, "(**self)");
impl_vmio_pointer!(Arc<T>, "(**self)");
/// A marker structure used for [`VmReader`] and [`VmWriter`],
/// representing their operated memory scope is in user space.
pub struct UserSpace;
/// A marker structure used for [`VmReader`] and [`VmWriter`],
/// representing their operated memory scope is in kernel space.
pub struct KernelSpace;
/// Copies `len` bytes from `src` to `dst`.
///
/// # Safety
///
/// - Mappings of virtual memory range [`src`..`src` + len] and [`dst`..`dst` + len]
/// must be [valid].
/// - If one of the memory represents typed memory, these two virtual
/// memory ranges and their corresponding physical pages should _not_ overlap.
///
/// Operation on typed memory may be safe only if it is plain-old-data. Otherwise,
/// the safety requirements of [`core::ptr::copy`] should also be considered,
/// except for the requirement that no concurrent access is allowed.
///
/// [valid]: core::ptr#safety
unsafe fn memcpy(dst: *mut u8, src: *const u8, len: usize) {
core::intrinsics::volatile_copy_memory(dst, src, len);
}
/// Copies `len` bytes from `src` to `dst`.
/// This function will early stop copying if encountering an unresolvable page fault.
///
/// Returns the number of successfully copied bytes.
///
/// # Safety
///
/// - Users should ensure one of [`src`..`src` + len] and [`dst`..`dst` + len]
/// is in user space, and the other virtual memory range is in kernel space
/// and is ensured to be [valid].
/// - Users should ensure this function only be invoked when a suitable page
/// table is activated.
/// - The underlying physical memory range of [`src`..`src` + len] and [`dst`..`dst` + len]
/// should _not_ overlap if the kernel space memory represent typed memory.
///
/// [valid]: core::ptr#safety
unsafe fn memcpy_fallible(dst: *mut u8, src: *const u8, len: usize) -> usize {
let failed_bytes = __memcpy_fallible(dst, src, len);
len - failed_bytes
}
/// `VmReader` is a reader for reading data from a contiguous range of memory.
///
/// The memory range read by `VmReader` can be in either kernel space or user space.
/// When the operating range is in kernel space, the memory within that range
/// is guaranteed to be valid.
/// When the operating range is in user space, it is ensured that the page table of
/// the process creating the `VmReader` is active for the duration of `'a`.
///
/// When perform reading with a `VmWriter`, if one of them represents typed memory,
/// it can ensure that the reading range in this reader and writing range in the
/// writer are not overlapped.
///
/// NOTE: The overlap mentioned above is at both the virtual address level
/// and physical address level. There is not guarantee for the operation results
/// of `VmReader` and `VmWriter` in overlapping untyped addresses, and it is
/// the user's responsibility to handle this situation.
pub struct VmReader<'a, Space = KernelSpace> {
cursor: *const u8,
end: *const u8,
phantom: PhantomData<(&'a [u8], Space)>,
}
macro_rules! impl_read_fallible {
($read_space:ty, $write_space:ty) => {
impl<'a> VmReader<'a, $read_space> {
/// Reads all data into the writer until one of the three conditions is met:
/// 1. The reader has no remaining data.
/// 2. The writer has no available space.
/// 3. The reader/writer encounters some error.
///
/// On success, the number of bytes read is returned;
/// On error, both the error and the number of bytes read so far are returned.
pub fn read_fallible(
&mut self,
writer: &mut VmWriter<'_, $write_space>,
) -> core::result::Result<usize, (Error, usize)> {
let copy_len = self.remain().min(writer.avail());
if copy_len == 0 {
return Ok(0);
}
// SAFETY: This method is only implemented when one of the operated
// `VmReader` or `VmWriter` is in user space.
// The the corresponding page table of the user space memory is
// guaranteed to be activated due to its construction requirement.
// The kernel space memory range will be valid since `copy_len` is the minimum
// of the reader's remaining data and the writer's available space, and will
// not overlap with user space memory range in physical address level if it
// represents typed memory.
let copied_len = unsafe {
let copied_len = memcpy_fallible(writer.cursor, self.cursor, copy_len);
self.cursor = self.cursor.add(copied_len);
writer.cursor = writer.cursor.add(copied_len);
copied_len
};
if copied_len < copy_len {
Err((Error::PageFault, copied_len))
} else {
Ok(copied_len)
}
}
}
};
}
macro_rules! impl_write_fallible {
($read_space:ty, $write_space:ty) => {
impl<'a> VmWriter<'a, $write_space> {
/// Writes all data from the reader until one of the three conditions is met:
/// 1. The reader has no remaining data.
/// 2. The writer has no available space.
/// 3. The reader/writer encounters some error.
///
/// On success, the number of bytes written is returned;
/// On error, both the error and the number of bytes written so far are returned.
pub fn write_fallible(
&mut self,
reader: &mut VmReader<'_, $read_space>,
) -> core::result::Result<usize, (Error, usize)> {
reader.read_fallible(self)
}
}
};
}
// TODO: implement an additional function `memcpy_nonoverlapping_fallible`
// to implement read/write instruction from user space to user space.
impl_read_fallible!(UserSpace, KernelSpace);
impl_read_fallible!(KernelSpace, UserSpace);
impl_write_fallible!(UserSpace, KernelSpace);
impl_write_fallible!(KernelSpace, UserSpace);
impl<'a> VmReader<'a, KernelSpace> {
/// Constructs a `VmReader` from a pointer and a length, which represents
/// a memory range in kernel space.
///
/// # Safety
///
/// Users must ensure the memory from `ptr` to `ptr.add(len)` is contiguous.
/// Users must ensure the memory is valid during the entire period of `'a`.
/// Users must ensure the memory should _not_ overlap with other `VmWriter`s
/// with typed memory, and if the memory range in this `VmReader` is typed,
/// it should _not_ overlap with other `VmWriter`s.
/// The user space memory is treated as untyped.
pub unsafe fn from_kernel_space(ptr: *const u8, len: usize) -> Self {
debug_assert!(KERNEL_BASE_VADDR <= ptr as usize);
debug_assert!(ptr.add(len) as usize <= KERNEL_END_VADDR);
Self {
cursor: ptr,
end: ptr.add(len),
phantom: PhantomData,
}
}
/// Reads all data into the writer until one of the two conditions is met:
/// 1. The reader has no remaining data.
/// 2. The writer has no available space.
///
/// Returns the number of bytes read.
pub fn read(&mut self, writer: &mut VmWriter<'_, KernelSpace>) -> usize {
let copy_len = self.remain().min(writer.avail());
if copy_len == 0 {
return 0;
}
// SAFETY: the reading memory range and writing memory range will be valid
// since `copy_len` is the minimum of the reader's remaining data and the
// writer's available space, and will not overlap if one of them represents
// typed memory.
unsafe {
memcpy(writer.cursor, self.cursor, copy_len);
self.cursor = self.cursor.add(copy_len);
writer.cursor = writer.cursor.add(copy_len);
}
copy_len
}
/// Reads a value of `Pod` type.
///
/// If the length of the `Pod` type exceeds `self.remain()`,
/// this method will return `Err`.
pub fn read_val<T: Pod>(&mut self) -> Result<T> {
if self.remain() < core::mem::size_of::<T>() {
return Err(Error::InvalidArgs);
}
let mut val = T::new_uninit();
let mut writer = VmWriter::from(val.as_bytes_mut());
self.read(&mut writer);
Ok(val)
}
}
impl<'a> VmReader<'a, UserSpace> {
/// Constructs a `VmReader` from a pointer and a length, which represents
/// a memory range in user space.
///
/// # Safety
///
/// Users must ensure the memory from `ptr` to `ptr.add(len)` is contiguous.
/// Users must ensure that the page table for the process in which this constructor is called
/// are active during the entire period of `'a`.
pub unsafe fn from_user_space(ptr: *const u8, len: usize) -> Self {
debug_assert!((ptr as usize).checked_add(len).unwrap_or(usize::MAX) <= MAX_USERSPACE_VADDR);
Self {
cursor: ptr,
end: ptr.add(len),
phantom: PhantomData,
}
}
/// Reads a value of `Pod` type.
///
/// If the length of the `Pod` type exceeds `self.remain()`,
/// or the value can not be read completely,
/// this method will return `Err`.
pub fn read_val<T: Pod>(&mut self) -> Result<T> {
if self.remain() < core::mem::size_of::<T>() {
return Err(Error::InvalidArgs);
}
let mut val = T::new_uninit();
let mut writer = VmWriter::from(val.as_bytes_mut());
self.read_fallible(&mut writer)
.map(|_| val)
.map_err(|err| err.0)
}
}
impl<'a, Space> VmReader<'a, Space> {
/// Returns the number of bytes for the remaining data.
pub const fn remain(&self) -> usize {
// SAFETY: the end is equal to or greater than the cursor.
unsafe { self.end.sub_ptr(self.cursor) }
}
/// Returns the cursor pointer, which refers to the address of the next byte to read.
pub const fn cursor(&self) -> *const u8 {
self.cursor
}
/// Returns if it has remaining data to read.
pub const fn has_remain(&self) -> bool {
self.remain() > 0
}
/// Limits the length of remaining data.
///
/// This method ensures the post condition of `self.remain() <= max_remain`.
pub const fn limit(mut self, max_remain: usize) -> Self {
if max_remain < self.remain() {
// SAFETY: the new end is less than the old end.
unsafe { self.end = self.cursor.add(max_remain) };
}
self
}
/// Skips the first `nbytes` bytes of data.
/// The length of remaining data is decreased accordingly.
///
/// # Panic
///
/// If `nbytes` is greater than `self.remain()`, then the method panics.
pub fn skip(mut self, nbytes: usize) -> Self {
assert!(nbytes <= self.remain());
// SAFETY: the new cursor is less than or equal to the end.
unsafe { self.cursor = self.cursor.add(nbytes) };
self
}
}
impl<'a> From<&'a [u8]> for VmReader<'a> {
fn from(slice: &'a [u8]) -> Self {
// SAFETY: the range of memory is contiguous and is valid during `'a`,
// and will not overlap with other `VmWriter` since the slice already has
// an immutable reference. The slice will not be mapped to the user space hence
// it will also not overlap with `VmWriter` generated from user space.
unsafe { Self::from_kernel_space(slice.as_ptr(), slice.len()) }
}
}
/// `VmWriter` is a writer for writing data to a contiguous range of memory.
///
/// The memory range write by `VmWriter` can be in either kernel space or user space.
/// When the operating range is in kernel space, the memory within that range
/// is guaranteed to be valid.
/// When the operating range is in user space, it is ensured that the page table of
/// the process creating the `VmWriter` is active for the duration of `'a`.
///
/// When perform writing with a `VmReader`, if one of them represents typed memory,
/// it can ensure that the writing range in this writer and reading range in the
/// reader are not overlapped.
///
/// NOTE: The overlap mentioned above is at both the virtual address level
/// and physical address level. There is not guarantee for the operation results
/// of `VmReader` and `VmWriter` in overlapping untyped addresses, and it is
/// the user's responsibility to handle this situation.
pub struct VmWriter<'a, Space = KernelSpace> {
cursor: *mut u8,
end: *mut u8,
phantom: PhantomData<(&'a mut [u8], Space)>,
}
impl<'a> VmWriter<'a, KernelSpace> {
/// Constructs a `VmWriter` from a pointer and a length, which represents
/// a memory range in kernel space.
///
/// # Safety
///
/// Users must ensure the memory from `ptr` to `ptr.add(len)` is contiguous.
/// Users must ensure the memory is valid during the entire period of `'a`.
/// Users must ensure the memory should _not_ overlap with other `VmWriter`s
/// and `VmReader`s with typed memory, and if the memory range in this `VmWriter`
/// is typed, it should _not_ overlap with other `VmReader`s and `VmWriter`s.
/// The user space memory is treated as untyped.
pub unsafe fn from_kernel_space(ptr: *mut u8, len: usize) -> Self {
debug_assert!(KERNEL_BASE_VADDR <= ptr as usize);
debug_assert!(ptr.add(len) as usize <= KERNEL_END_VADDR);
Self {
cursor: ptr,
end: ptr.add(len),
phantom: PhantomData,
}
}
/// Writes all data from the reader until one of the two conditions is met:
/// 1. The reader has no remaining data.
/// 2. The writer has no available space.
///
/// Returns the number of bytes written.
pub fn write(&mut self, reader: &mut VmReader<'_, KernelSpace>) -> usize {
reader.read(self)
}
/// Writes a value of `Pod` type.
///
/// If the length of the `Pod` type exceeds `self.avail()`,
/// this method will return `Err`.
pub fn write_val<T: Pod>(&mut self, new_val: &T) -> Result<()> {
if self.avail() < core::mem::size_of::<T>() {
return Err(Error::InvalidArgs);
}
let mut reader = VmReader::from(new_val.as_bytes());
self.write(&mut reader);
Ok(())
}
/// Fills the available space by repeating `value`.
///
/// Returns the number of values written.
///
/// # Panic
///
/// The size of the available space must be a multiple of the size of `value`.
/// Otherwise, the method would panic.
pub fn fill<T: Pod>(&mut self, value: T) -> usize {
let avail = self.avail();
assert!((self.cursor as *mut T).is_aligned());
assert!(avail % core::mem::size_of::<T>() == 0);
let written_num = avail / core::mem::size_of::<T>();
for i in 0..written_num {
// SAFETY: `written_num` is calculated by the avail size and the size of the type `T`,
// hence the `add` operation and `write` operation are valid and will only manipulate
// the memory managed by this writer.
unsafe {
(self.cursor as *mut T).add(i).write(value);
}
}
// The available space has been filled so this cursor can be moved to the end.
self.cursor = self.end;
written_num
}
}
impl<'a> VmWriter<'a, UserSpace> {
/// Constructs a `VmWriter` from a pointer and a length, which represents
/// a memory range in user space.
///
/// # Safety
///
/// Users must ensure the memory from `ptr` to `ptr.add(len)` is contiguous.
/// Users must ensure that the page table for the process in which this constructor is called
/// are active during the entire period of `'a`.
pub unsafe fn from_user_space(ptr: *mut u8, len: usize) -> Self {
debug_assert!((ptr as usize).checked_add(len).unwrap_or(usize::MAX) <= MAX_USERSPACE_VADDR);
Self {
cursor: ptr,
end: ptr.add(len),
phantom: PhantomData,
}
}
/// Writes a value of `Pod` type.
///
/// If the length of the `Pod` type exceeds `self.avail()`,
/// or the value can not be write completely,
/// this method will return `Err`.
pub fn write_val<T: Pod>(&mut self, new_val: &T) -> Result<()> {
if self.avail() < core::mem::size_of::<T>() {
return Err(Error::InvalidArgs);
}
let mut reader = VmReader::from(new_val.as_bytes());
self.write_fallible(&mut reader).map_err(|err| err.0)?;
Ok(())
}
}
impl<'a, Space> VmWriter<'a, Space> {
/// Returns the number of bytes for the available space.
pub const fn avail(&self) -> usize {
// SAFETY: the end is equal to or greater than the cursor.
unsafe { self.end.sub_ptr(self.cursor) }
}
/// Returns the cursor pointer, which refers to the address of the next byte to write.
pub const fn cursor(&self) -> *mut u8 {
self.cursor
}
/// Returns if it has available space to write.
pub const fn has_avail(&self) -> bool {
self.avail() > 0
}
/// Limits the length of available space.
///
/// This method ensures the post condition of `self.avail() <= max_avail`.
pub const fn limit(mut self, max_avail: usize) -> Self {
if max_avail < self.avail() {
// SAFETY: the new end is less than the old end.
unsafe { self.end = self.cursor.add(max_avail) };
}
self
}
/// Skips the first `nbytes` bytes of data.
/// The length of available space is decreased accordingly.
///
/// # Panic
///
/// If `nbytes` is greater than `self.avail()`, then the method panics.
pub fn skip(mut self, nbytes: usize) -> Self {
assert!(nbytes <= self.avail());
// SAFETY: the new cursor is less than or equal to the end.
unsafe { self.cursor = self.cursor.add(nbytes) };
self
}
}
impl<'a> From<&'a mut [u8]> for VmWriter<'a> {
fn from(slice: &'a mut [u8]) -> Self {
// SAFETY: the range of memory is contiguous and is valid during `'a`, and
// will not overlap with other `VmWriter`s and `VmReader`s since the slice
// already has an mutable reference. The slice will not be mapped to the user
// space hence it will also not overlap with `VmWriter`s and `VmReader`s
// generated from user space.
unsafe { Self::from_kernel_space(slice.as_mut_ptr(), slice.len()) }
}
}