1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
// SPDX-License-Identifier: MPL-2.0
use alloc::sync::Arc;
use core::ops::Range;
#[cfg(feature = "intel_tdx")]
use ::tdx_guest::tdx_is_enabled;
use super::{check_and_insert_dma_mapping, remove_dma_mapping, DmaError, HasDaddr};
#[cfg(feature = "intel_tdx")]
use crate::arch::tdx_guest;
use crate::{
arch::iommu,
error::Error,
mm::{
dma::{dma_type, Daddr, DmaType},
HasPaddr, Paddr, Segment, VmIo, VmReader, VmWriter, PAGE_SIZE,
},
};
/// A streaming DMA mapping. Users must synchronize data
/// before reading or after writing to ensure consistency.
///
/// The mapping is automatically destroyed when this object
/// is dropped.
#[derive(Debug, Clone)]
pub struct DmaStream {
inner: Arc<DmaStreamInner>,
}
#[derive(Debug)]
struct DmaStreamInner {
vm_segment: Segment,
start_daddr: Daddr,
/// TODO: remove this field when on x86.
#[allow(unused)]
is_cache_coherent: bool,
direction: DmaDirection,
}
/// `DmaDirection` limits the data flow direction of [`DmaStream`] and
/// prevents users from reading and writing to [`DmaStream`] unexpectedly.
#[derive(Debug, PartialEq, Clone, Copy)]
pub enum DmaDirection {
/// Data flows to the device
ToDevice,
/// Data flows form the device
FromDevice,
/// Data flows both from and to the device
Bidirectional,
}
impl DmaStream {
/// Establishes DMA stream mapping for a given [`Segment`].
///
/// The method fails if the segment already belongs to a DMA mapping.
pub fn map(
vm_segment: Segment,
direction: DmaDirection,
is_cache_coherent: bool,
) -> Result<Self, DmaError> {
let frame_count = vm_segment.nframes();
let start_paddr = vm_segment.start_paddr();
if !check_and_insert_dma_mapping(start_paddr, frame_count) {
return Err(DmaError::AlreadyMapped);
}
// Ensure that the addresses used later will not overflow
start_paddr.checked_add(frame_count * PAGE_SIZE).unwrap();
let start_daddr = match dma_type() {
DmaType::Direct => {
#[cfg(feature = "intel_tdx")]
// SAFETY:
// This is safe because we are ensuring that the physical address range specified by `start_paddr` and `frame_count` is valid before these operations.
// The `check_and_insert_dma_mapping` function checks if the physical address range is already mapped.
// We are also ensuring that we are only modifying the page table entries corresponding to the physical address range specified by `start_paddr` and `frame_count`.
// Therefore, we are not causing any undefined behavior or violating any of the requirements of the 'unprotect_gpa_range' function.
if tdx_is_enabled() {
unsafe {
tdx_guest::unprotect_gpa_range(start_paddr, frame_count).unwrap();
}
}
start_paddr as Daddr
}
DmaType::Iommu => {
for i in 0..frame_count {
let paddr = start_paddr + (i * PAGE_SIZE);
// SAFETY: the `paddr` is restricted by the `start_paddr` and `frame_count` of the `vm_segment`.
unsafe {
iommu::map(paddr as Daddr, paddr).unwrap();
}
}
start_paddr as Daddr
}
};
Ok(Self {
inner: Arc::new(DmaStreamInner {
vm_segment,
start_daddr,
is_cache_coherent,
direction,
}),
})
}
/// Gets the underlying [`Segment`].
///
/// Usually, the CPU side should not access the memory
/// after the DMA mapping is established because
/// there is a chance that the device is updating
/// the memory. Do this at your own risk.
pub fn vm_segment(&self) -> &Segment {
&self.inner.vm_segment
}
/// Returns the number of frames
pub fn nframes(&self) -> usize {
self.inner.vm_segment.nframes()
}
/// Returns the number of bytes
pub fn nbytes(&self) -> usize {
self.inner.vm_segment.nbytes()
}
/// Synchronizes the streaming DMA mapping with the device.
///
/// This method should be called under one of the two conditions:
/// 1. The data of the stream DMA mapping has been updated by the device side.
/// The CPU side needs to call the `sync` method before reading data (e.g., using [`read_bytes`]).
/// 2. The data of the stream DMA mapping has been updated by the CPU side
/// (e.g., using [`write_bytes`]).
/// Before the CPU side notifies the device side to read, it must call the `sync` method first.
///
/// [`read_bytes`]: Self::read_bytes
/// [`write_bytes`]: Self::write_bytes
pub fn sync(&self, _byte_range: Range<usize>) -> Result<(), Error> {
cfg_if::cfg_if! {
if #[cfg(target_arch = "x86_64")]{
// The streaming DMA mapping in x86_64 is cache coherent, and does not require synchronization.
// Reference: <https://lwn.net/Articles/855328/>, <https://lwn.net/Articles/2265/>
Ok(())
} else {
if _byte_range.end > self.nbytes() {
return Err(Error::InvalidArgs);
}
if self.inner.is_cache_coherent {
return Ok(());
}
let start_va = self.inner.vm_segment.as_ptr();
// TODO: Query the CPU for the cache line size via CPUID, we use 64 bytes as the cache line size here.
for i in _byte_range.step_by(64) {
// TODO: Call the cache line flush command in the corresponding architecture.
todo!()
}
Ok(())
}
}
}
}
impl HasDaddr for DmaStream {
fn daddr(&self) -> Daddr {
self.inner.start_daddr
}
}
impl Drop for DmaStreamInner {
fn drop(&mut self) {
let frame_count = self.vm_segment.nframes();
let start_paddr = self.vm_segment.start_paddr();
// Ensure that the addresses used later will not overflow
start_paddr.checked_add(frame_count * PAGE_SIZE).unwrap();
match dma_type() {
DmaType::Direct => {
#[cfg(feature = "intel_tdx")]
// SAFETY:
// This is safe because we are ensuring that the physical address range specified by `start_paddr` and `frame_count` is valid before these operations.
// The `start_paddr()` ensures the `start_paddr` is page-aligned.
// We are also ensuring that we are only modifying the page table entries corresponding to the physical address range specified by `start_paddr` and `frame_count`.
// Therefore, we are not causing any undefined behavior or violating any of the requirements of the `protect_gpa_range` function.
if tdx_is_enabled() {
unsafe {
tdx_guest::protect_gpa_range(start_paddr, frame_count).unwrap();
}
}
}
DmaType::Iommu => {
for i in 0..frame_count {
let paddr = start_paddr + (i * PAGE_SIZE);
iommu::unmap(paddr).unwrap();
}
}
}
remove_dma_mapping(start_paddr, frame_count);
}
}
impl VmIo for DmaStream {
/// Reads data into the buffer.
fn read_bytes(&self, offset: usize, buf: &mut [u8]) -> Result<(), Error> {
if self.inner.direction == DmaDirection::ToDevice {
return Err(Error::AccessDenied);
}
self.inner.vm_segment.read_bytes(offset, buf)
}
/// Writes data from the buffer.
fn write_bytes(&self, offset: usize, buf: &[u8]) -> Result<(), Error> {
if self.inner.direction == DmaDirection::FromDevice {
return Err(Error::AccessDenied);
}
self.inner.vm_segment.write_bytes(offset, buf)
}
}
impl<'a> DmaStream {
/// Returns a reader to read data from it.
pub fn reader(&'a self) -> Result<VmReader<'a>, Error> {
if self.inner.direction == DmaDirection::ToDevice {
return Err(Error::AccessDenied);
}
Ok(self.inner.vm_segment.reader())
}
/// Returns a writer to write data into it.
pub fn writer(&'a self) -> Result<VmWriter<'a>, Error> {
if self.inner.direction == DmaDirection::FromDevice {
return Err(Error::AccessDenied);
}
Ok(self.inner.vm_segment.writer())
}
}
impl HasPaddr for DmaStream {
fn paddr(&self) -> Paddr {
self.inner.vm_segment.start_paddr()
}
}
/// A slice of streaming DMA mapping.
#[derive(Debug)]
pub struct DmaStreamSlice<'a> {
stream: &'a DmaStream,
offset: usize,
len: usize,
}
impl<'a> DmaStreamSlice<'a> {
/// Constructs a `DmaStreamSlice` from the [`DmaStream`].
///
/// # Panics
///
/// If the `offset` is greater than or equal to the length of the stream,
/// this method will panic.
/// If the `offset + len` is greater than the length of the stream,
/// this method will panic.
pub fn new(stream: &'a DmaStream, offset: usize, len: usize) -> Self {
assert!(offset < stream.nbytes());
assert!(offset + len <= stream.nbytes());
Self {
stream,
offset,
len,
}
}
/// Returns the number of bytes.
pub fn nbytes(&self) -> usize {
self.len
}
/// Synchronizes the slice of streaming DMA mapping with the device.
pub fn sync(&self) -> Result<(), Error> {
self.stream.sync(self.offset..self.offset + self.len)
}
}
impl VmIo for DmaStreamSlice<'_> {
fn read_bytes(&self, offset: usize, buf: &mut [u8]) -> Result<(), Error> {
if buf.len() + offset > self.len {
return Err(Error::InvalidArgs);
}
self.stream.read_bytes(self.offset + offset, buf)
}
fn write_bytes(&self, offset: usize, buf: &[u8]) -> Result<(), Error> {
if buf.len() + offset > self.len {
return Err(Error::InvalidArgs);
}
self.stream.write_bytes(self.offset + offset, buf)
}
}
impl HasDaddr for DmaStreamSlice<'_> {
fn daddr(&self) -> Daddr {
self.stream.daddr() + self.offset
}
}
impl HasPaddr for DmaStreamSlice<'_> {
fn paddr(&self) -> Paddr {
self.stream.paddr() + self.offset
}
}
#[cfg(ktest)]
mod test {
use alloc::vec;
use super::*;
use crate::{mm::FrameAllocOptions, prelude::*};
#[ktest]
fn streaming_map() {
let vm_segment = FrameAllocOptions::new(1)
.is_contiguous(true)
.alloc_contiguous()
.unwrap();
let dma_stream =
DmaStream::map(vm_segment.clone(), DmaDirection::Bidirectional, true).unwrap();
assert!(dma_stream.paddr() == vm_segment.paddr());
}
#[ktest]
fn duplicate_map() {
let vm_segment_parent = FrameAllocOptions::new(2)
.is_contiguous(true)
.alloc_contiguous()
.unwrap();
let vm_segment_child = vm_segment_parent.range(0..1);
let dma_stream_parent =
DmaStream::map(vm_segment_parent, DmaDirection::Bidirectional, false);
let dma_stream_child = DmaStream::map(vm_segment_child, DmaDirection::Bidirectional, false);
assert!(dma_stream_child.is_err());
}
#[ktest]
fn read_and_write() {
let vm_segment = FrameAllocOptions::new(2)
.is_contiguous(true)
.alloc_contiguous()
.unwrap();
let dma_stream = DmaStream::map(vm_segment, DmaDirection::Bidirectional, false).unwrap();
let buf_write = vec![1u8; 2 * PAGE_SIZE];
dma_stream.write_bytes(0, &buf_write).unwrap();
dma_stream.sync(0..2 * PAGE_SIZE).unwrap();
let mut buf_read = vec![0u8; 2 * PAGE_SIZE];
dma_stream.read_bytes(0, &mut buf_read).unwrap();
assert_eq!(buf_write, buf_read);
}
#[ktest]
fn reader_and_wirter() {
let vm_segment = FrameAllocOptions::new(2)
.is_contiguous(true)
.alloc_contiguous()
.unwrap();
let dma_stream = DmaStream::map(vm_segment, DmaDirection::Bidirectional, false).unwrap();
let buf_write = vec![1u8; PAGE_SIZE];
let mut writer = dma_stream.writer().unwrap();
writer.write(&mut buf_write.as_slice().into());
writer.write(&mut buf_write.as_slice().into());
dma_stream.sync(0..2 * PAGE_SIZE).unwrap();
let mut buf_read = vec![0u8; 2 * PAGE_SIZE];
let buf_write = vec![1u8; 2 * PAGE_SIZE];
let mut reader = dma_stream.reader().unwrap();
reader.read(&mut buf_read.as_mut_slice().into());
assert_eq!(buf_read, buf_write);
}
}