1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
//! Types for the Global Descriptor Table and segment selectors.

pub use crate::registers::segmentation::SegmentSelector;
use crate::structures::tss::TaskStateSegment;
use crate::PrivilegeLevel;
use bit_field::BitField;
use bitflags::bitflags;
// imports for intra-doc links
#[cfg(doc)]
use crate::registers::segmentation::{Segment, CS, SS};

/// A 64-bit mode global descriptor table (GDT).
///
/// In 64-bit mode, segmentation is not supported. The GDT is used nonetheless, for example for
/// switching between user and kernel mode or for loading a TSS.
///
/// The GDT has a fixed size of 8 entries, trying to add more entries will panic.
///
/// You do **not** need to add a null segment descriptor yourself - this is already done
/// internally.
///
/// Data segment registers in ring 0 can be loaded with the null segment selector. When running in
/// ring 3, the `ss` register must point to a valid data segment which can be obtained through the
/// [`Descriptor::user_data_segment()`](Descriptor::user_data_segment) function. Code segments must
/// be valid and non-null at all times and can be obtained through the
/// [`Descriptor::kernel_code_segment()`](Descriptor::kernel_code_segment) and
/// [`Descriptor::user_code_segment()`](Descriptor::user_code_segment) in rings 0 and 3
/// respectively.
///
/// For more info, see:
/// [x86 Instruction Reference for `mov`](https://www.felixcloutier.com/x86/mov#64-bit-mode-exceptions),
/// [Intel Manual](https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf),
/// [AMD Manual](https://www.amd.com/system/files/TechDocs/24593.pdf)
///
/// # Example
/// ```
/// use x86_64::structures::gdt::{GlobalDescriptorTable, Descriptor};
///
/// let mut gdt = GlobalDescriptorTable::new();
/// gdt.add_entry(Descriptor::kernel_code_segment());
/// gdt.add_entry(Descriptor::user_code_segment());
/// gdt.add_entry(Descriptor::user_data_segment());
///
/// // Add entry for TSS, call gdt.load() then update segment registers
/// ```

#[derive(Debug, Clone)]
pub struct GlobalDescriptorTable {
    table: [u64; 8],
    len: usize,
}

impl GlobalDescriptorTable {
    /// Creates an empty GDT.
    #[inline]
    pub const fn new() -> GlobalDescriptorTable {
        GlobalDescriptorTable {
            table: [0; 8],
            len: 1,
        }
    }

    /// Forms a GDT from a slice of `u64`.
    ///
    /// # Safety
    ///
    /// * The user must make sure that the entries are well formed
    /// * The provided slice **must not be larger than 8 items** (only up to the first 8 will be observed.)
    #[inline]
    pub const unsafe fn from_raw_slice(slice: &[u64]) -> GlobalDescriptorTable {
        let len = slice.len();
        let mut table = [0; 8];
        let mut idx = 0;

        assert!(
            len <= 8,
            "initializing a GDT from a slice requires it to be **at most** 8 elements."
        );

        while idx < len {
            table[idx] = slice[idx];
            idx += 1;
        }

        GlobalDescriptorTable { table, len }
    }

    /// Get a reference to the internal table.
    ///
    /// The resulting slice may contain system descriptors, which span two `u64`s.
    #[inline]
    pub fn as_raw_slice(&self) -> &[u64] {
        &self.table[..self.len]
    }

    /// Adds the given segment descriptor to the GDT, returning the segment selector.
    ///
    /// Panics if the GDT doesn't have enough free entries to hold the Descriptor.
    #[inline]
    #[cfg_attr(feature = "const_fn", rustversion::attr(all(), const))]
    pub fn add_entry(&mut self, entry: Descriptor) -> SegmentSelector {
        let index = match entry {
            Descriptor::UserSegment(value) => {
                if self.len > self.table.len().saturating_sub(1) {
                    panic!("GDT full")
                }
                self.push(value)
            }
            Descriptor::SystemSegment(value_low, value_high) => {
                if self.len > self.table.len().saturating_sub(2) {
                    panic!("GDT requires two free spaces to hold a SystemSegment")
                }
                let index = self.push(value_low);
                self.push(value_high);
                index
            }
        };
        SegmentSelector::new(index as u16, entry.dpl())
    }

    /// Loads the GDT in the CPU using the `lgdt` instruction. This does **not** alter any of the
    /// segment registers; you **must** (re)load them yourself using [the appropriate
    /// functions](crate::instructions::segmentation):
    /// [`SS::set_reg()`] and [`CS::set_reg()`].
    #[cfg(feature = "instructions")]
    #[inline]
    pub fn load(&'static self) {
        // SAFETY: static lifetime ensures no modification after loading.
        unsafe { self.load_unsafe() };
    }

    /// Loads the GDT in the CPU using the `lgdt` instruction. This does **not** alter any of the
    /// segment registers; you **must** (re)load them yourself using [the appropriate
    /// functions](crate::instructions::segmentation):
    /// [`SS::set_reg()`] and [`CS::set_reg()`].
    ///
    /// # Safety
    ///
    /// Unlike `load` this function will not impose a static lifetime constraint
    /// this means its up to the user to ensure that there will be no modifications
    /// after loading and that the GDT will live for as long as it's loaded.
    ///
    #[cfg(feature = "instructions")]
    #[inline]
    pub unsafe fn load_unsafe(&self) {
        use crate::instructions::tables::lgdt;
        unsafe {
            lgdt(&self.pointer());
        }
    }

    #[inline]
    #[cfg_attr(feature = "const_fn", rustversion::attr(all(), const))]
    fn push(&mut self, value: u64) -> usize {
        let index = self.len;
        self.table[index] = value;
        self.len += 1;
        index
    }

    /// Creates the descriptor pointer for this table. This pointer can only be
    /// safely used if the table is never modified or destroyed while in use.
    #[cfg(feature = "instructions")]
    fn pointer(&self) -> super::DescriptorTablePointer {
        use core::mem::size_of;
        super::DescriptorTablePointer {
            base: crate::VirtAddr::new(self.table.as_ptr() as u64),
            limit: (self.len * size_of::<u64>() - 1) as u16,
        }
    }
}

/// A 64-bit mode segment descriptor.
///
/// Segmentation is no longer supported in 64-bit mode, so most of the descriptor
/// contents are ignored.
#[derive(Debug, Clone, Copy)]
pub enum Descriptor {
    /// Descriptor for a code or data segment.
    ///
    /// Since segmentation is no longer supported in 64-bit mode, almost all of
    /// code and data descriptors is ignored. Only some flags are still used.
    UserSegment(u64),
    /// A system segment descriptor such as a LDT or TSS descriptor.
    SystemSegment(u64, u64),
}

bitflags! {
    /// Flags for a GDT descriptor. Not all flags are valid for all descriptor types.
    #[derive(PartialEq, Eq, PartialOrd, Ord, Hash, Debug, Clone, Copy)]
    pub struct DescriptorFlags: u64 {
        /// Set by the processor if this segment has been accessed. Only cleared by software.
        /// _Setting_ this bit in software prevents GDT writes on first use.
        const ACCESSED          = 1 << 40;
        /// For 32-bit data segments, sets the segment as writable. For 32-bit code segments,
        /// sets the segment as _readable_. In 64-bit mode, ignored for all segments.
        const WRITABLE          = 1 << 41;
        /// For code segments, sets the segment as “conforming”, influencing the
        /// privilege checks that occur on control transfers. For 32-bit data segments,
        /// sets the segment as "expand down". In 64-bit mode, ignored for data segments.
        const CONFORMING        = 1 << 42;
        /// This flag must be set for code segments and unset for data segments.
        const EXECUTABLE        = 1 << 43;
        /// This flag must be set for user segments (in contrast to system segments).
        const USER_SEGMENT      = 1 << 44;
        /// These two bits encode the Descriptor Privilege Level (DPL) for this descriptor.
        /// If both bits are set, the DPL is Ring 3, if both are unset, the DPL is Ring 0.
        const DPL_RING_3        = 3 << 45;
        /// Must be set for any segment, causes a segment not present exception if not set.
        const PRESENT           = 1 << 47;
        /// Available for use by the Operating System
        const AVAILABLE         = 1 << 52;
        /// Must be set for 64-bit code segments, unset otherwise.
        const LONG_MODE         = 1 << 53;
        /// Use 32-bit (as opposed to 16-bit) operands. If [`LONG_MODE`][Self::LONG_MODE] is set,
        /// this must be unset. In 64-bit mode, ignored for data segments.
        const DEFAULT_SIZE      = 1 << 54;
        /// Limit field is scaled by 4096 bytes. In 64-bit mode, ignored for all segments.
        const GRANULARITY       = 1 << 55;

        /// Bits `0..=15` of the limit field (ignored in 64-bit mode)
        const LIMIT_0_15        = 0xFFFF;
        /// Bits `16..=19` of the limit field (ignored in 64-bit mode)
        const LIMIT_16_19       = 0xF << 48;
        /// Bits `0..=23` of the base field (ignored in 64-bit mode, except for fs and gs)
        const BASE_0_23         = 0xFF_FFFF << 16;
        /// Bits `24..=31` of the base field (ignored in 64-bit mode, except for fs and gs)
        const BASE_24_31        = 0xFF << 56;
    }
}

/// The following constants define default values for common GDT entries. They
/// are all "flat" segments, meaning they can access the entire address space.
/// These values all set [`WRITABLE`][DescriptorFlags::WRITABLE] and
/// [`ACCESSED`][DescriptorFlags::ACCESSED]. They also match the values loaded
/// by the `syscall`/`sysret` and `sysenter`/`sysexit` instructions.
///
/// In short, these values disable segmentation, permission checks, and access
/// tracking at the GDT level. Kernels using these values should use paging to
/// implement this functionality.
impl DescriptorFlags {
    // Flags that we set for all our default segments
    const COMMON: Self = Self::from_bits_truncate(
        Self::USER_SEGMENT.bits()
            | Self::PRESENT.bits()
            | Self::WRITABLE.bits()
            | Self::ACCESSED.bits()
            | Self::LIMIT_0_15.bits()
            | Self::LIMIT_16_19.bits()
            | Self::GRANULARITY.bits(),
    );
    /// A kernel data segment (64-bit or flat 32-bit)
    pub const KERNEL_DATA: Self =
        Self::from_bits_truncate(Self::COMMON.bits() | Self::DEFAULT_SIZE.bits());
    /// A flat 32-bit kernel code segment
    pub const KERNEL_CODE32: Self = Self::from_bits_truncate(
        Self::COMMON.bits() | Self::EXECUTABLE.bits() | Self::DEFAULT_SIZE.bits(),
    );
    /// A 64-bit kernel code segment
    pub const KERNEL_CODE64: Self = Self::from_bits_truncate(
        Self::COMMON.bits() | Self::EXECUTABLE.bits() | Self::LONG_MODE.bits(),
    );
    /// A user data segment (64-bit or flat 32-bit)
    pub const USER_DATA: Self =
        Self::from_bits_truncate(Self::KERNEL_DATA.bits() | Self::DPL_RING_3.bits());
    /// A flat 32-bit user code segment
    pub const USER_CODE32: Self =
        Self::from_bits_truncate(Self::KERNEL_CODE32.bits() | Self::DPL_RING_3.bits());
    /// A 64-bit user code segment
    pub const USER_CODE64: Self =
        Self::from_bits_truncate(Self::KERNEL_CODE64.bits() | Self::DPL_RING_3.bits());

    #[deprecated = "use the safe `from_bits_retain` method instead"]
    /// Convert from underlying bit representation, preserving all bits (even those not corresponding to a defined flag).
    pub const unsafe fn from_bits_unchecked(bits: u64) -> Self {
        Self::from_bits_retain(bits)
    }
}

impl Descriptor {
    /// Returns the Descriptor Privilege Level (DPL). When using this descriptor
    /// via a [`SegmentSelector`], the RPL and Current Privilege Level (CPL)
    /// must less than or equal to the DPL, except for stack segments where the
    /// RPL, CPL, and DPL must all be equal.
    #[inline]
    pub const fn dpl(self) -> PrivilegeLevel {
        let value_low = match self {
            Descriptor::UserSegment(v) => v,
            Descriptor::SystemSegment(v, _) => v,
        };
        let dpl = (value_low & DescriptorFlags::DPL_RING_3.bits()) >> 45;
        PrivilegeLevel::from_u16(dpl as u16)
    }

    /// Creates a segment descriptor for a 64-bit kernel code segment. Suitable
    /// for use with `syscall` or 64-bit `sysenter`.
    #[inline]
    pub const fn kernel_code_segment() -> Descriptor {
        Descriptor::UserSegment(DescriptorFlags::KERNEL_CODE64.bits())
    }

    /// Creates a segment descriptor for a kernel data segment (32-bit or
    /// 64-bit). Suitable for use with `syscall` or `sysenter`.
    #[inline]
    pub const fn kernel_data_segment() -> Descriptor {
        Descriptor::UserSegment(DescriptorFlags::KERNEL_DATA.bits())
    }

    /// Creates a segment descriptor for a ring 3 data segment (32-bit or
    /// 64-bit). Suitable for use with `sysret` or `sysexit`.
    #[inline]
    pub const fn user_data_segment() -> Descriptor {
        Descriptor::UserSegment(DescriptorFlags::USER_DATA.bits())
    }

    /// Creates a segment descriptor for a 64-bit ring 3 code segment. Suitable
    /// for use with `sysret` or `sysexit`.
    #[inline]
    pub const fn user_code_segment() -> Descriptor {
        Descriptor::UserSegment(DescriptorFlags::USER_CODE64.bits())
    }

    /// Creates a TSS system descriptor for the given TSS.
    ///
    /// While it is possible to create multiple Descriptors that point to the
    /// same TSS, this generally isn't recommended, as the TSS usually contains
    /// per-CPU information such as the RSP and IST pointers. Instead, there
    /// should be exactly one TSS and one corresponding TSS Descriptor per CPU.
    /// Then, each of these descriptors should be placed in a GDT (which can
    /// either be global or per-CPU).
    #[inline]
    pub fn tss_segment(tss: &'static TaskStateSegment) -> Descriptor {
        // SAFETY: The pointer is derived from a &'static reference, which ensures its validity.
        unsafe { Self::tss_segment_unchecked(tss) }
    }

    /// Similar to [`Descriptor::tss_segment`], but unsafe since it does not enforce a lifetime
    /// constraint on the provided TSS.
    ///
    /// # Safety
    /// The caller must ensure that the passed pointer is valid for as long as the descriptor is
    /// being used.
    #[inline]
    pub unsafe fn tss_segment_unchecked(tss: *const TaskStateSegment) -> Descriptor {
        use self::DescriptorFlags as Flags;
        use core::mem::size_of;

        let ptr = tss as u64;

        let mut low = Flags::PRESENT.bits();
        // base
        low.set_bits(16..40, ptr.get_bits(0..24));
        low.set_bits(56..64, ptr.get_bits(24..32));
        // limit (the `-1` in needed since the bound is inclusive)
        low.set_bits(0..16, (size_of::<TaskStateSegment>() - 1) as u64);
        // type (0b1001 = available 64-bit tss)
        low.set_bits(40..44, 0b1001);

        let mut high = 0;
        high.set_bits(0..32, ptr.get_bits(32..64));

        Descriptor::SystemSegment(low, high)
    }
}

#[cfg(test)]
mod tests {
    use super::DescriptorFlags as Flags;
    use super::*;

    #[test]
    #[rustfmt::skip]
    pub fn linux_kernel_defaults() {
        // Make sure our defaults match the ones used by the Linux kernel.
        // Constants pulled from an old version of arch/x86/kernel/cpu/common.c
        assert_eq!(Flags::KERNEL_CODE64.bits(), 0x00af9b000000ffff);
        assert_eq!(Flags::KERNEL_CODE32.bits(), 0x00cf9b000000ffff);
        assert_eq!(Flags::KERNEL_DATA.bits(),   0x00cf93000000ffff);
        assert_eq!(Flags::USER_CODE64.bits(),   0x00affb000000ffff);
        assert_eq!(Flags::USER_CODE32.bits(),   0x00cffb000000ffff);
        assert_eq!(Flags::USER_DATA.bits(),     0x00cff3000000ffff);
    }

    // Makes a GDT that has two free slots
    fn make_six_entry_gdt() -> GlobalDescriptorTable {
        let mut gdt = GlobalDescriptorTable::new();
        gdt.add_entry(Descriptor::kernel_code_segment());
        gdt.add_entry(Descriptor::kernel_data_segment());
        gdt.add_entry(Descriptor::UserSegment(DescriptorFlags::USER_CODE32.bits()));
        gdt.add_entry(Descriptor::user_data_segment());
        gdt.add_entry(Descriptor::user_code_segment());
        assert_eq!(gdt.len, 6);
        gdt
    }

    static TSS: TaskStateSegment = TaskStateSegment::new();

    fn make_full_gdt() -> GlobalDescriptorTable {
        let mut gdt = make_six_entry_gdt();
        gdt.add_entry(Descriptor::tss_segment(&TSS));
        assert_eq!(gdt.len, 8);
        gdt
    }

    #[test]
    pub fn push_max_segments() {
        // Make sure we don't panic with user segments
        let mut gdt = make_six_entry_gdt();
        gdt.add_entry(Descriptor::user_data_segment());
        assert_eq!(gdt.len, 7);
        gdt.add_entry(Descriptor::user_data_segment());
        assert_eq!(gdt.len, 8);
        // Make sure we don't panic with system segments
        let _ = make_full_gdt();
    }

    #[test]
    #[should_panic]
    pub fn panic_user_segment() {
        let mut gdt = make_full_gdt();
        gdt.add_entry(Descriptor::user_data_segment());
    }

    #[test]
    #[should_panic]
    pub fn panic_system_segment() {
        let mut gdt = make_six_entry_gdt();
        gdt.add_entry(Descriptor::user_data_segment());
        // We have one free slot, but the GDT requires two
        gdt.add_entry(Descriptor::tss_segment(&TSS));
    }

    #[test]
    pub fn descriptor_dpl() {
        assert_eq!(
            Descriptor::kernel_code_segment().dpl(),
            PrivilegeLevel::Ring0
        );
        assert_eq!(
            Descriptor::kernel_data_segment().dpl(),
            PrivilegeLevel::Ring0
        );
        assert_eq!(Descriptor::user_code_segment().dpl(), PrivilegeLevel::Ring3);
        assert_eq!(Descriptor::user_code_segment().dpl(), PrivilegeLevel::Ring3);
    }
}