1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
// SPDX-License-Identifier: MPL-2.0
#![allow(unused_variables)]
use core::marker::PhantomData;
use align_ext::AlignExt;
use inherit_methods_macro::inherit_methods;
use pod::Pod;
use crate::prelude::*;
/// A trait that enables reading/writing data from/to a VM object,
/// e.g., [`VmSpace`], [`FrameVec`], and [`Frame`].
///
/// # Concurrency
///
/// The methods may be executed by multiple concurrent reader and writer
/// threads. In this case, if the results of concurrent reads or writes
/// desire predictability or atomicity, the users should add extra mechanism
/// for such properties.
///
/// [`VmSpace`]: crate::mm::VmSpace
/// [`FrameVec`]: crate::mm::FrameVec
/// [`Frame`]: crate::mm::Frame
pub trait VmIo: Send + Sync {
/// Reads a specified number of bytes at a specified offset into a given buffer.
///
/// # No short reads
///
/// On success, the output `buf` must be filled with the requested data
/// completely. If, for any reason, the requested data is only partially
/// available, then the method shall return an error.
fn read_bytes(&self, offset: usize, buf: &mut [u8]) -> Result<()>;
/// Reads a value of a specified type at a specified offset.
fn read_val<T: Pod>(&self, offset: usize) -> Result<T> {
let mut val = T::new_uninit();
self.read_bytes(offset, val.as_bytes_mut())?;
Ok(val)
}
/// Reads a slice of a specified type at a specified offset.
///
/// # No short reads
///
/// Similar to [`read_bytes`].
///
/// [`read_bytes`]: VmIo::read_bytes
fn read_slice<T: Pod>(&self, offset: usize, slice: &mut [T]) -> Result<()> {
let buf = unsafe { core::mem::transmute(slice) };
self.read_bytes(offset, buf)
}
/// Writes a specified number of bytes from a given buffer at a specified offset.
///
/// # No short writes
///
/// On success, the input `buf` must be written to the VM object entirely.
/// If, for any reason, the input data can only be written partially,
/// then the method shall return an error.
fn write_bytes(&self, offset: usize, buf: &[u8]) -> Result<()>;
/// Writes a value of a specified type at a specified offset.
fn write_val<T: Pod>(&self, offset: usize, new_val: &T) -> Result<()> {
self.write_bytes(offset, new_val.as_bytes())?;
Ok(())
}
/// Writes a slice of a specified type at a specified offset.
///
/// # No short write
///
/// Similar to [`write_bytes`].
///
/// [`write_bytes`]: VmIo::write_bytes
fn write_slice<T: Pod>(&self, offset: usize, slice: &[T]) -> Result<()> {
let buf = unsafe { core::mem::transmute(slice) };
self.write_bytes(offset, buf)
}
/// Writes a sequence of values given by an iterator (`iter`) from the specified offset (`offset`).
///
/// The write process stops until the VM object does not have enough remaining space
/// or the iterator returns `None`. If any value is written, the function returns `Ok(nr_written)`,
/// where `nr_written` is the number of the written values.
///
/// The offset of every value written by this method is aligned to the `align`-byte boundary.
/// Naturally, when `align` equals to `0` or `1`, then the argument takes no effect:
/// the values will be written in the most compact way.
///
/// # Example
///
/// Initializes an VM object with the same value can be done easily with `write_values`.
///
/// ```
/// use core::iter::self;
///
/// let _nr_values = vm_obj.write_vals(0, iter::repeat(0_u32), 0).unwrap();
/// ```
///
/// # Panics
///
/// This method panics if `align` is greater than two,
/// but not a power of two, in release mode.
fn write_vals<'a, T: Pod + 'a, I: Iterator<Item = &'a T>>(
&self,
offset: usize,
iter: I,
align: usize,
) -> Result<usize> {
let mut nr_written = 0;
let (mut offset, item_size) = if (align >> 1) == 0 {
// align is 0 or 1
(offset, core::mem::size_of::<T>())
} else {
// align is more than 2
(
offset.align_up(align),
core::mem::size_of::<T>().align_up(align),
)
};
for item in iter {
match self.write_val(offset, item) {
Ok(_) => {
offset += item_size;
nr_written += 1;
}
Err(e) => {
if nr_written > 0 {
return Ok(nr_written);
}
return Err(e);
}
}
}
Ok(nr_written)
}
}
macro_rules! impl_vmio_pointer {
($typ:ty,$from:tt) => {
#[inherit_methods(from = $from)]
impl<T: VmIo> VmIo for $typ {
fn read_bytes(&self, offset: usize, buf: &mut [u8]) -> Result<()>;
fn read_val<F: Pod>(&self, offset: usize) -> Result<F>;
fn read_slice<F: Pod>(&self, offset: usize, slice: &mut [F]) -> Result<()>;
fn write_bytes(&self, offset: usize, buf: &[u8]) -> Result<()>;
fn write_val<F: Pod>(&self, offset: usize, new_val: &F) -> Result<()>;
fn write_slice<F: Pod>(&self, offset: usize, slice: &[F]) -> Result<()>;
}
};
}
impl_vmio_pointer!(&T, "(**self)");
impl_vmio_pointer!(&mut T, "(**self)");
impl_vmio_pointer!(Box<T>, "(**self)");
impl_vmio_pointer!(Arc<T>, "(**self)");
/// VmReader is a reader for reading data from a contiguous range of memory.
pub struct VmReader<'a> {
cursor: *const u8,
end: *const u8,
phantom: PhantomData<&'a [u8]>,
}
impl<'a> VmReader<'a> {
/// Constructs a VmReader from a pointer and a length.
///
/// # Safety
///
/// User must ensure the memory from `ptr` to `ptr.add(len)` is contiguous.
/// User must ensure the memory is valid during the entire period of `'a`.
pub const unsafe fn from_raw_parts(ptr: *const u8, len: usize) -> Self {
Self {
cursor: ptr,
end: ptr.add(len),
phantom: PhantomData,
}
}
/// Returns the number of bytes for the remaining data.
pub const fn remain(&self) -> usize {
// SAFETY: the end is equal to or greater than the cursor.
unsafe { self.end.sub_ptr(self.cursor) }
}
/// Returns the cursor pointer, which refers to the address of the next byte to read.
pub const fn cursor(&self) -> *const u8 {
self.cursor
}
/// Returns if it has remaining data to read.
pub const fn has_remain(&self) -> bool {
self.remain() > 0
}
/// Limits the length of remaining data.
///
/// This method ensures the postcondition of `self.remain() <= max_remain`.
pub const fn limit(mut self, max_remain: usize) -> Self {
if max_remain < self.remain() {
// SAFETY: the new end is less than the old end.
unsafe { self.end = self.cursor.add(max_remain) };
}
self
}
/// Skips the first `nbytes` bytes of data.
/// The length of remaining data is decreased accordingly.
///
/// # Panic
///
/// If `nbytes` is greater than `self.remain()`, then the method panics.
pub fn skip(mut self, nbytes: usize) -> Self {
assert!(nbytes <= self.remain());
// SAFETY: the new cursor is less than or equal to the end.
unsafe { self.cursor = self.cursor.add(nbytes) };
self
}
/// Reads all data into the writer until one of the two conditions is met:
/// 1. The reader has no remaining data.
/// 2. The writer has no available space.
///
/// Returns the number of bytes read.
///
/// It pulls the number of bytes data from the reader and
/// fills in the writer with the number of bytes.
pub fn read(&mut self, writer: &mut VmWriter<'_>) -> usize {
let copy_len = self.remain().min(writer.avail());
if copy_len == 0 {
return 0;
}
// SAFETY: the memory range is valid since `copy_len` is the minimum
// of the reader's remaining data and the writer's available space.
unsafe {
core::ptr::copy(self.cursor, writer.cursor, copy_len);
self.cursor = self.cursor.add(copy_len);
writer.cursor = writer.cursor.add(copy_len);
}
copy_len
}
/// Read a value of `Pod` type.
///
/// # Panic
///
/// If the length of the `Pod` type exceeds `self.remain()`, then this method will panic.
pub fn read_val<T: Pod>(&mut self) -> T {
assert!(self.remain() >= core::mem::size_of::<T>());
let mut val = T::new_uninit();
let mut writer = VmWriter::from(val.as_bytes_mut());
let read_len = self.read(&mut writer);
val
}
}
impl<'a> From<&'a [u8]> for VmReader<'a> {
fn from(slice: &'a [u8]) -> Self {
// SAFETY: the range of memory is contiguous and is valid during `'a`.
unsafe { Self::from_raw_parts(slice.as_ptr(), slice.len()) }
}
}
/// VmWriter is a writer for writing data to a contiguous range of memory.
pub struct VmWriter<'a> {
cursor: *mut u8,
end: *mut u8,
phantom: PhantomData<&'a mut [u8]>,
}
impl<'a> VmWriter<'a> {
/// Constructs a VmWriter from a pointer and a length.
///
/// # Safety
///
/// User must ensure the memory from `ptr` to `ptr.add(len)` is contiguous.
/// User must ensure the memory is valid during the entire period of `'a`.
pub const unsafe fn from_raw_parts_mut(ptr: *mut u8, len: usize) -> Self {
Self {
cursor: ptr,
end: ptr.add(len),
phantom: PhantomData,
}
}
/// Returns the number of bytes for the available space.
pub const fn avail(&self) -> usize {
// SAFETY: the end is equal to or greater than the cursor.
unsafe { self.end.sub_ptr(self.cursor) }
}
/// Returns the cursor pointer, which refers to the address of the next byte to write.
pub const fn cursor(&self) -> *mut u8 {
self.cursor
}
/// Returns if it has avaliable space to write.
pub const fn has_avail(&self) -> bool {
self.avail() > 0
}
/// Limits the length of available space.
///
/// This method ensures the postcondition of `self.avail() <= max_avail`.
pub const fn limit(mut self, max_avail: usize) -> Self {
if max_avail < self.avail() {
// SAFETY: the new end is less than the old end.
unsafe { self.end = self.cursor.add(max_avail) };
}
self
}
/// Skips the first `nbytes` bytes of data.
/// The length of available space is decreased accordingly.
///
/// # Panic
///
/// If `nbytes` is greater than `self.avail()`, then the method panics.
pub fn skip(mut self, nbytes: usize) -> Self {
assert!(nbytes <= self.avail());
// SAFETY: the new cursor is less than or equal to the end.
unsafe { self.cursor = self.cursor.add(nbytes) };
self
}
/// Writes data from the reader until one of the two conditions is met:
/// 1. The writer has no available space.
/// 2. The reader has no remaining data.
///
/// Returns the number of bytes written.
///
/// It pulls the number of bytes data from the reader and
/// fills in the writer with the number of bytes.
pub fn write(&mut self, reader: &mut VmReader<'_>) -> usize {
let copy_len = self.avail().min(reader.remain());
if copy_len == 0 {
return 0;
}
// SAFETY: the memory range is valid since `copy_len` is the minimum
// of the reader's remaining data and the writer's available space.
unsafe {
core::ptr::copy(reader.cursor, self.cursor, copy_len);
self.cursor = self.cursor.add(copy_len);
reader.cursor = reader.cursor.add(copy_len);
}
copy_len
}
/// Fills the available space by repeating `value`.
///
/// Returns the number of values written.
///
/// # Panic
///
/// The size of the available space must be a multiple of the size of `value`.
/// Otherwise, the method would panic.
pub fn fill<T: Pod>(&mut self, value: T) -> usize {
let avail = self.avail();
assert!((self.cursor as *mut T).is_aligned());
assert!(avail % core::mem::size_of::<T>() == 0);
let written_num = avail / core::mem::size_of::<T>();
for i in 0..written_num {
// SAFETY: `written_num` is calculated by the avail size and the size of the type `T`,
// hence the `add` operation and `write` operation are valid and will only manipulate
// the memory managed by this writer.
unsafe {
(self.cursor as *mut T).add(i).write(value);
}
}
// The available space has been filled so this cursor can be moved to the end.
self.cursor = self.end;
written_num
}
}
impl<'a> From<&'a mut [u8]> for VmWriter<'a> {
fn from(slice: &'a mut [u8]) -> Self {
// SAFETY: the range of memory is contiguous and is valid during `'a`.
unsafe { Self::from_raw_parts_mut(slice.as_mut_ptr(), slice.len()) }
}
}