ostd/task/scheduler/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
// SPDX-License-Identifier: MPL-2.0

//! Task scheduling.
//!
//! # Scheduler Injection
//!
//! The task scheduler of an OS is a complex beast,
//! and the most suitable scheduling algorithm often depends on the target usage scenario.
//! To avoid code bloat and offer flexibility,
//! OSTD does not include a gigantic, one-size-fits-all task scheduler.
//! Instead, it allows the client to implement a custom scheduler (in safe Rust, of course)
//! and register it with OSTD.
//! This feature is known as **scheduler injection**.
//!
//! The client kernel performs scheduler injection via the [`inject_scheduler`] API.
//! This API should be called as early as possible during kernel initialization,
//! before any [`Task`]-related APIs are used.
//! This requirement is reasonable since `Task`s depend on the scheduler.
//!
//! # Scheduler Abstraction
//!
//! The `inject_scheduler` API accepts an object implementing the [`Scheduler`] trait,
//! which abstracts over any SMP-aware task scheduler.
//! Whenever an OSTD client spawns a new task (via [`crate::task::TaskOptions`])
//! or wakes a sleeping task (e.g., via [`crate::sync::Waker`]),
//! OSTD internally forwards the corresponding `Arc<Task>`
//! to the scheduler by invoking the [`Scheduler::enqueue`] method.
//! This allows the injected scheduler to manage all runnable tasks.
//!
//! Each enqueued task is dispatched to one of the per-CPU local runqueues,
//! which manage all runnable tasks on a specific CPU.
//! A local runqueue is abstracted by the [`LocalRunQueue`] trait.
//! OSTD accesses the local runqueue of the current CPU
//! via [`Scheduler::local_rq_with`] or [`Scheduler::mut_local_rq_with`],
//! which return immutable and mutable references to `dyn LocalRunQueue`, respectively.
//!
//! The [`LocalRunQueue`] trait enables OSTD to inspect and manipulate local runqueues.
//! For instance, OSTD invokes the [`LocalRunQueue::pick_next`] method
//! to let the scheduler select the next task to run.
//! OSTD then performs a context switch to that task,
//! which becomes the _current_ running task, accessible via [`LocalRunQueue::current`].
//! When the current task is about to sleep (e.g., via [`crate::sync::Waiter`]),
//! OSTD removes it from the local runqueue using [`LocalRunQueue::dequeue_current`].
//!
//! The interfaces of `Scheduler` and `LocalRunQueue` are simple
//! yet (perhaps surprisingly) powerful enough to support
//! even complex and advanced task scheduler implementations.
//! Scheduler implementations are free to employ any load-balancing strategy
//! to dispatch enqueued tasks across local runqueues,
//! and each local runqueue is free to choose any prioritization strategy
//! for selecting the next task to run.
//! Based on OSTD's scheduling abstractions,
//! the Asterinas kernel has successfully supported multiple Linux scheduling classes,
//! including both real-time and normal policies.
//!
//! # Safety Impact
//!
//! While OSTD delegates scheduling decisions to the injected task scheduler,
//! it verifies these decisions to avoid undefined behavior.
//! In particular, it enforces the following safety invariant:
//!
//! > A task must not be scheduled to run on more than one CPU at a time.
//!
//! Violating this invariant—e.g., running the same task on two CPUs concurrently—
//! can have catastrophic consequences,
//! as the task's stack and internal state may be corrupted by concurrent modifications.

mod fifo_scheduler;
pub mod info;

use spin::Once;

use super::{preempt::cpu_local, processor, Task};
use crate::{
    cpu::{set::CpuSet, CpuId, PinCurrentCpu},
    prelude::*,
    task::disable_preempt,
    timer,
};

/// Injects a custom implementation of task scheduler into OSTD.
///
/// This function can only be called once and must be called during the initialization phase of kernel,
/// before any [`Task`]-related APIs are invoked.
pub fn inject_scheduler(scheduler: &'static dyn Scheduler<Task>) {
    SCHEDULER.call_once(|| scheduler);

    timer::register_callback(|| {
        SCHEDULER.get().unwrap().mut_local_rq_with(&mut |local_rq| {
            let should_pick_next = local_rq.update_current(UpdateFlags::Tick);
            if should_pick_next {
                cpu_local::set_need_preempt();
            }
        })
    });
}

static SCHEDULER: Once<&'static dyn Scheduler<Task>> = Once::new();

/// A SMP-aware task scheduler.
pub trait Scheduler<T = Task>: Sync + Send {
    /// Enqueues a runnable task.
    ///
    /// The scheduler implementer can perform load-balancing or some time accounting work here.
    ///
    /// The newly-enqueued task may have a higher priority than the currently running one on a CPU
    /// and thus should preempt the latter.
    /// In this case, this method returns the ID of that CPU.
    fn enqueue(&self, runnable: Arc<T>, flags: EnqueueFlags) -> Option<CpuId>;

    /// Gets an immutable access to the local runqueue of the current CPU.
    fn local_rq_with(&self, f: &mut dyn FnMut(&dyn LocalRunQueue<T>));

    /// Gets a mutable access to the local runqueue of the current CPU.
    fn mut_local_rq_with(&self, f: &mut dyn FnMut(&mut dyn LocalRunQueue<T>));
}

/// A per-CPU, local runqueue.
///
/// This abstraction allows OSTD to inspect and manipulate local runqueues.
///
/// Conceptually, a local runqueue maintains:
/// 1. A priority queue of runnable tasks.
///    The definition of "priority" is left to the concrete implementation.
/// 2. The current running task.
///
/// # Interactions with OSTD
///
/// ## Overview
///
/// It is crucial for implementers of `LocalRunQueue`
/// to understand how OSTD interacts with local runqueues.
///
/// A local runqueue is consulted by OSTD in response to one of four scheduling events:
/// - **Yielding**, triggered by [`Task::yield_now`], where the current task voluntarily gives up CPU time.
/// - **Sleeping**, triggered by [`crate::sync::Waiter::wait`]
///   or any synchronization primitive built upon it (e.g., [`crate::sync::WaitQueue`], [`crate::sync::Mutex`]),
///   which blocks the current task until a wake-up event occurs.
/// - **Ticking**, triggered periodically by the system timer
///   (see [`crate::arch::timer::TIMER_FREQ`]),
///   which provides an opportunity to do time accounting and consider preemption.
/// - **Exiting**, triggered when the execution logic of a task has come to an end,
///   which informs the scheduler that the task is exiting and will never be enqueued again.
///
/// The general workflow for OSTD to handle a scheduling event is as follows:
/// 1. Acquire exclusive access to the local runqueue using [`Scheduler::mut_local_rq_with`].
/// 2. Call [`LocalRunQueue::update_current`] to update the current task's state,
///    returning a boolean value that indicates
///    whether the current task should and can be replaced with another runnable task.
/// 3. If the task is about to sleep or exit, call [`LocalRunQueue::dequeue_current`]
///    to remove it from the runqueue.
/// 4. If the return value of `update_current` in Step 2 is true,
///    then select the next task to run with [`LocalRunQueue::pick_next`].
///
/// ## When to Pick the Next Task?
///
/// As shown above,
/// OSTD guarantees that `pick_next` is only called
/// when the current task should and can be replaced.
/// This avoids unnecessary invocations and improves efficiency.
///
/// But under what conditions should the current task be replaced?
/// Two criteria must be met:
/// 1. There exists at least one other runnable task in the runqueue.
/// 2. That task should preempt the current one, if present.
///
/// Some implications of these rules:
/// - If the runqueue is empty, `update_current` must return `false`—there's nothing to run.
/// - If the runqueue is non-empty but the current task is absent,
///   `update_current` should return `true`—anything is better than nothing.
/// - If the runqueue is non-empty and the flag is `UpdateFlags::WAIT`,
///   `update_current` should also return `true`,
///   because the current task is about to block.
/// - In other cases, the return value depends on the scheduler's prioritization policy.
///   For instance, a real-time task may only be preempted by a higher-priority task
///   or if it explicitly yields.
///   A normal task under Linux's CFS may be preempted by a task with smaller vruntime,
///   but never by the idle task.
///
/// When OSTD is unsure about whether the current task should or can be replaced,
/// it will invoke [`LocalRunQueue::try_pick_next`], the fallible version of `pick_next`.
///
/// ## Internal Working
///
/// To guide scheduler implementers,
/// we provide a simplified view of how OSTD interacts with local runqueues _internally_
/// in order to handle the four scheduling events.
///
/// ### Yielding
///
/// ```
/// # use ostd::prelude::*;
/// # use ostd::task::{*, scheduler::*};
/// #
/// # fn switch_to(next: Arc<Task>) {}
/// #
/// /// Yields the current task.
/// fn yield(scheduler: &'static dyn Scheduler) {
///     let next_task_opt: Option<Arc<Task>> = scheduler.mut_local_rq_with(|local_rq| {
///         let should_pick_next = local_rq.update_current(UpdateFlags::Yield);
///         should_pick_next.then(|| local_rq.pick_next().clone())
///     });
///     let Some(next_task) = next_task_opt {
///         switch_to(next_task);
///     }
/// }
/// ```
///
/// ### Sleeping
///
/// ```
/// # use ostd::prelude::*;
/// # use ostd::task::{*, scheduler::*};
/// #
/// # fn switch_to(next: Arc<Task>) {}
/// #
/// /// Puts the current task to sleep.
/// ///
/// /// The function takes a closure to check if the task is woken.
/// /// This function is used internally to guard against race conditions,
/// /// where the task is woken just before it goes to sleep.
/// fn sleep<F: Fn() -> bool>(scheduler: &'static dyn Scheduler, is_woken: F) {
///     let mut next_task_opt: Option<Arc<Task>> = None;
///     let mut is_first_try = true;
///     while scheduler.mut_local_rq_with(|local_rq| {
///         if is_first_try {
///             if is_woken() {
///                 return false; // exit loop
///             }
///             is_first_try = false;
///
///             let should_pick_next = local_rq.update_current(UpdateFlags::Wait);
///             let _current = local_rq.dequeue_current();
///             if !should_pick_next {
///                 return true; // continue loop
///             }
///             next_task_opt = Some(local_rq.pick_next().clone());
///             false // exit loop
///         } else {
///             next_task_opt = local_rq.try_pick_next().cloned();
///             next_task_opt.is_none()
///         }
///     }) {}
///     let Some(next_task) = next_task_opt {
///         switch_to(next_task);
///     }
/// }
/// ```
///
/// ### Ticking
///
/// ```
/// # use ostd::prelude::*;
/// # use ostd::task::{*, scheduler::*};
/// #
/// # fn switch_to(next: Arc<Task>) {}
/// # mod cpu_local {
/// #     fn set_need_preempt();
/// #     fn should_preempt() -> bool;
/// # }
/// #
/// /// A callback to be invoked periodically by the timer interrupt.
/// fn on_tick(scheduler: &'static dyn Scheduler) {
///     scheduler.mut_local_rq_with(|local_rq| {
///         let should_pick_next = local_rq.update_current(UpdateFlags::Tick);
///         if should_pick_next {
///             cpu_local::set_need_preempt();
///         }
///     });
/// }
///
/// /// A preemption point, called at an earliest convenient timing
/// /// when OSTD can safely preempt the current running task.
/// fn might_preempt(scheduler: &'static dyn Scheduler) {
///     if !cpu_local::should_preempt() {
///         return;
///     }
///     let next_task_opt: Option<Arc<Task>> = scheduler
///         .mut_local_rq_with(|local_rq| local_rq.try_pick_next().cloned())
///     let Some(next_task) = next_task_opt {
///         switch_to(next_task);
///     }
/// }
/// ```
///
/// ### Exiting
///
/// ```
/// # use ostd::prelude::*;
/// # use ostd::task::{*, scheduler::*};
/// #
/// # fn switch_to(next: Arc<Task>) {}
/// #
/// /// Exits the current task.
/// fn exit(scheduler: &'static dyn Scheduler) {
///     let mut next_task_opt: Option<Arc<Task>> = None;
///     let mut is_first_try = true;
///     while scheduler.mut_local_rq_with(|local_rq| {
///         if is_first_try {
///             is_first_try = false;
///             let should_pick_next = local_rq.update_current(UpdateFlags::Exit);
///             let _current = local_rq.dequeue_current();
///             if !should_pick_next {
///                 return true; // continue loop
///             }
///             next_task_opt = Some(local_rq.pick_next().clone());
///             false // exit loop
///         } else {
///             next_task_opt = local_rq.try_pick_next().cloned();
///             next_task_opt.is_none()
///         }
///     }) {}
///     let next_task = next_task_opt.unwrap();
///     switch_to(next_task);
/// }
/// ```
pub trait LocalRunQueue<T = Task> {
    /// Gets the current runnable task.
    fn current(&self) -> Option<&Arc<T>>;

    /// Updates the current runnable task's scheduling statistics and
    /// potentially its position in the runqueue.
    ///
    /// The return value of this method indicates whether an invocation of `pick_next` should be followed
    /// to find another task to replace the current one.
    #[must_use]
    fn update_current(&mut self, flags: UpdateFlags) -> bool;

    /// Picks the next runnable task.
    ///
    /// This method instructs the local runqueue to pick the next runnable task and replace the current one.
    /// A reference to the new "current" task will be returned by this method.
    /// If the "old" current task presents, then it is still runnable and thus remains in the runqueue.
    ///
    /// # Panics
    ///
    /// As explained in the type-level Rust doc,
    /// this method will only be invoked by OSTD after a call to `update_current` returns true.
    /// In case that this contract is broken by the caller,
    /// the implementer is free to exhibit any undesirable or incorrect behaviors, include panicking.
    fn pick_next(&mut self) -> &Arc<T> {
        self.try_pick_next().unwrap()
    }

    /// Tries to pick the next runnable task.
    ///
    /// This method instructs the local runqueue to pick the next runnable task on a best-effort basis.
    /// If such a task can be picked, then this task supersedes the current task and
    /// the new the method returns a reference to the new "current" task.
    /// If the "old" current task presents, then it is still runnable and thus remains in the runqueue.
    fn try_pick_next(&mut self) -> Option<&Arc<T>>;

    /// Removes the current runnable task from runqueue.
    ///
    /// This method returns the current runnable task.
    /// If there is no current runnable task, this method returns `None`.
    fn dequeue_current(&mut self) -> Option<Arc<T>>;
}

/// Possible triggers of an `enqueue` action.
#[derive(PartialEq, Copy, Clone)]
pub enum EnqueueFlags {
    /// Spawn a new task.
    Spawn,
    /// Wake a sleeping task.
    Wake,
}

/// Possible triggers of an `update_current` action.
#[derive(PartialEq, Copy, Clone)]
pub enum UpdateFlags {
    /// Timer interrupt.
    Tick,
    /// Task waiting.
    Wait,
    /// Task yielding.
    Yield,
    /// Task exiting.
    Exit,
}

/// Preempts the current task.
#[track_caller]
pub(crate) fn might_preempt() {
    if !cpu_local::should_preempt() {
        return;
    }
    reschedule(|local_rq| {
        let next_task_opt = local_rq.try_pick_next();
        if let Some(next_task) = next_task_opt {
            ReschedAction::SwitchTo(next_task.clone())
        } else {
            ReschedAction::DoNothing
        }
    })
}

/// Blocks the current task unless `has_unparked()` returns `true`.
///
/// Note that this method may return due to spurious wake events. It's the caller's responsibility
/// to detect them (if necessary).
#[track_caller]
pub(crate) fn park_current<F>(has_unparked: F)
where
    F: Fn() -> bool,
{
    let mut current = None;
    let mut is_first_try = true;

    reschedule(|local_rq: &mut dyn LocalRunQueue| {
        let next_task_opt = if is_first_try {
            if has_unparked() {
                return ReschedAction::DoNothing;
            }
            is_first_try = false;

            // Note the race conditions: the current task may be woken after the above `has_unparked`
            // check, but before the below `dequeue_current` action, we need to make sure that the
            // wakeup event isn't lost.
            //
            // Currently, for the FIFO and CFS scheduler, `Scheduler::enqueue` will try to lock `local_rq`
            // when the above race condition occurs, so it will wait until we finish calling the
            // `dequeue_current` method and nothing bad will happen. This may need to be revisited
            // after more complex schedulers are introduced.

            let should_pick_next = local_rq.update_current(UpdateFlags::Wait);
            current = local_rq.dequeue_current();
            should_pick_next.then(|| local_rq.pick_next())
        } else {
            local_rq.try_pick_next()
        };

        if let Some(next_task) = next_task_opt {
            if Arc::ptr_eq(current.as_ref().unwrap(), next_task) {
                // The current task has been woken and picked as the next runnable task.
                return ReschedAction::DoNothing;
            }
            return ReschedAction::SwitchTo(next_task.clone());
        }

        ReschedAction::Retry
    });
}

/// Unblocks a target task.
pub(crate) fn unpark_target(runnable: Arc<Task>) {
    let preempt_cpu = SCHEDULER
        .get()
        .unwrap()
        .enqueue(runnable, EnqueueFlags::Wake);
    if let Some(preempt_cpu_id) = preempt_cpu {
        set_need_preempt(preempt_cpu_id);
    }
}

/// Enqueues a newly built task.
///
/// Note that the new task is not guaranteed to run at once.
#[track_caller]
pub(super) fn run_new_task(runnable: Arc<Task>) {
    // FIXME: remove this check for `SCHEDULER`.
    // Currently OSTD cannot know whether its user has injected a scheduler.
    if !SCHEDULER.is_completed() {
        fifo_scheduler::init();
    }

    let preempt_cpu = SCHEDULER
        .get()
        .unwrap()
        .enqueue(runnable, EnqueueFlags::Spawn);
    if let Some(preempt_cpu_id) = preempt_cpu {
        set_need_preempt(preempt_cpu_id);
    }

    might_preempt();
}

fn set_need_preempt(cpu_id: CpuId) {
    let preempt_guard = disable_preempt();

    if preempt_guard.current_cpu() == cpu_id {
        cpu_local::set_need_preempt();
    } else {
        crate::smp::inter_processor_call(&CpuSet::from(cpu_id), || {
            cpu_local::set_need_preempt();
        });
    }
}

/// Dequeues the current task from its runqueue.
///
/// This should only be called if the current is to exit.
#[track_caller]
pub(super) fn exit_current() -> ! {
    let mut is_first_try = true;

    reschedule(|local_rq: &mut dyn LocalRunQueue| {
        let next_task_opt = if is_first_try {
            is_first_try = false;
            let should_pick_next = local_rq.update_current(UpdateFlags::Exit);
            let _current = local_rq.dequeue_current();
            should_pick_next.then(|| local_rq.pick_next())
        } else {
            local_rq.try_pick_next()
        };

        if let Some(next_task) = next_task_opt {
            ReschedAction::SwitchTo(next_task.clone())
        } else {
            ReschedAction::Retry
        }
    });

    unreachable!()
}

/// Yields execution.
#[track_caller]
pub(super) fn yield_now() {
    reschedule(|local_rq| {
        let should_pick_next = local_rq.update_current(UpdateFlags::Yield);
        let next_task_opt = should_pick_next.then(|| local_rq.pick_next());
        if let Some(next_task) = next_task_opt {
            ReschedAction::SwitchTo(next_task.clone())
        } else {
            ReschedAction::DoNothing
        }
    })
}

/// Do rescheduling by acting on the scheduling decision (`ReschedAction`) made by a
/// user-given closure.
///
/// The closure makes the scheduling decision by taking the local runqueue has its input.
#[track_caller]
fn reschedule<F>(mut f: F)
where
    F: FnMut(&mut dyn LocalRunQueue) -> ReschedAction,
{
    // Even if the decision below is `DoNothing`, we should clear this flag. Meanwhile, to avoid
    // race conditions, we should do this before making the decision.
    cpu_local::clear_need_preempt();

    let next_task = loop {
        let mut action = ReschedAction::DoNothing;
        SCHEDULER.get().unwrap().mut_local_rq_with(&mut |rq| {
            action = f(rq);
        });

        match action {
            ReschedAction::DoNothing => {
                return;
            }
            ReschedAction::Retry => {
                continue;
            }
            ReschedAction::SwitchTo(next_task) => {
                break next_task;
            }
        };
    };

    // `switch_to_task` will spin if it finds that the next task is still running on some CPU core,
    // which guarantees soundness regardless of the scheduler implementation.
    //
    // FIXME: The scheduler decision and context switching are not atomic, which can lead to some
    // strange behavior even if the scheduler is implemented correctly. See "Problem 2" at
    // <https://github.com/asterinas/asterinas/issues/1633> for details.
    processor::switch_to_task(next_task);
}

/// Possible actions of a rescheduling.
enum ReschedAction {
    /// Keep running current task and do nothing.
    DoNothing,
    /// Loop until finding a task to swap out the current.
    Retry,
    /// Switch to target task.
    SwitchTo(Arc<Task>),
}