ostd/mm/vm_space.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
// SPDX-License-Identifier: MPL-2.0
//! Virtual memory space management.
//!
//! The [`VmSpace`] struct is provided to manage the virtual memory space of a
//! user. Cursors are used to traverse and modify over the virtual memory space
//! concurrently. The VM space cursor [`self::Cursor`] is just a wrapper over
//! the page table cursor, providing efficient, powerful concurrent accesses
//! to the page table.
use core::{ops::Range, sync::atomic::Ordering};
use super::{page_table::PageTableConfig, AnyUFrameMeta, PagingLevel};
use crate::{
arch::mm::{current_page_table_paddr, PageTableEntry, PagingConsts},
cpu::{
set::{AtomicCpuSet, CpuSet},
PinCurrentCpu,
},
cpu_local_cell,
io::IoMem,
mm::{
io::Fallible,
kspace::KERNEL_PAGE_TABLE,
page_prop::{CachePolicy, PageFlags},
page_table::{self, PageTable, PageTableFrag},
tlb::{TlbFlushOp, TlbFlusher},
Frame, PageProperty, PrivilegedPageFlags, UFrame, VmReader, VmWriter, MAX_USERSPACE_VADDR,
PAGE_SIZE,
},
prelude::*,
sync::SpinLock,
task::{atomic_mode::AsAtomicModeGuard, disable_preempt, DisabledPreemptGuard},
Error,
};
/// A virtual address space for user-mode tasks, enabling safe manipulation of user-space memory.
///
/// The `VmSpace` type provides memory isolation guarantees between user-space and
/// kernel-space. For example, given an arbitrary user-space pointer, one can read and
/// write the memory location referred to by the user-space pointer without the risk of
/// breaking the memory safety of the kernel space.
///
/// # Task Association Semantics
///
/// As far as OSTD is concerned, a `VmSpace` is not necessarily associated with a task. Once a
/// `VmSpace` is activated (see [`VmSpace::activate`]), it remains activated until another
/// `VmSpace` is activated **possibly by another task running on the same CPU**.
///
/// This means that it's up to the kernel to ensure that a task's `VmSpace` is always activated
/// while the task is running. This can be done by using the injected post schedule handler
/// (see [`inject_post_schedule_handler`]) to always activate the correct `VmSpace` after each
/// context switch.
///
/// If the kernel otherwise decides not to ensure that the running task's `VmSpace` is always
/// activated, the kernel must deal with race conditions when calling methods that require the
/// `VmSpace` to be activated, e.g., [`UserMode::execute`], [`VmSpace::reader`],
/// [`VmSpace::writer`]. Otherwise, the behavior is unspecified, though it's guaranteed _not_ to
/// compromise the kernel's memory safety.
///
/// # Memory Backing
///
/// A newly-created `VmSpace` is not backed by any physical memory pages. To
/// provide memory pages for a `VmSpace`, one can allocate and map physical
/// memory ([`UFrame`]s) to the `VmSpace` using the cursor.
///
/// A `VmSpace` can also attach a page fault handler, which will be invoked to
/// handle page faults generated from user space.
///
/// [`inject_post_schedule_handler`]: crate::task::inject_post_schedule_handler
/// [`UserMode::execute`]: crate::user::UserMode::execute
#[derive(Debug)]
pub struct VmSpace {
pt: PageTable<UserPtConfig>,
cpus: AtomicCpuSet,
iomems: SpinLock<Vec<IoMem>>,
}
impl VmSpace {
/// Creates a new VM address space.
pub fn new() -> Self {
Self {
pt: KERNEL_PAGE_TABLE.get().unwrap().create_user_page_table(),
cpus: AtomicCpuSet::new(CpuSet::new_empty()),
iomems: SpinLock::new(Vec::new()),
}
}
/// Gets an immutable cursor in the virtual address range.
///
/// The cursor behaves like a lock guard, exclusively owning a sub-tree of
/// the page table, preventing others from creating a cursor in it. So be
/// sure to drop the cursor as soon as possible.
///
/// The creation of the cursor may block if another cursor having an
/// overlapping range is alive.
pub fn cursor<'a, G: AsAtomicModeGuard>(
&'a self,
guard: &'a G,
va: &Range<Vaddr>,
) -> Result<Cursor<'a>> {
Ok(Cursor(self.pt.cursor(guard, va)?))
}
/// Gets an mutable cursor in the virtual address range.
///
/// The same as [`Self::cursor`], the cursor behaves like a lock guard,
/// exclusively owning a sub-tree of the page table, preventing others
/// from creating a cursor in it. So be sure to drop the cursor as soon as
/// possible.
///
/// The creation of the cursor may block if another cursor having an
/// overlapping range is alive. The modification to the mapping by the
/// cursor may also block or be overridden the mapping of another cursor.
pub fn cursor_mut<'a, G: AsAtomicModeGuard>(
&'a self,
guard: &'a G,
va: &Range<Vaddr>,
) -> Result<CursorMut<'a>> {
Ok(CursorMut {
pt_cursor: self.pt.cursor_mut(guard, va)?,
flusher: TlbFlusher::new(&self.cpus, disable_preempt()),
vmspace: self,
})
}
/// Activates the page table on the current CPU.
pub fn activate(self: &Arc<Self>) {
let preempt_guard = disable_preempt();
let cpu = preempt_guard.current_cpu();
let last_ptr = ACTIVATED_VM_SPACE.load();
if last_ptr == Arc::as_ptr(self) {
return;
}
// Record ourselves in the CPU set and the activated VM space pointer.
// `Acquire` to ensure the modification to the PT is visible by this CPU.
self.cpus.add(cpu, Ordering::Acquire);
let self_ptr = Arc::into_raw(Arc::clone(self)) as *mut VmSpace;
ACTIVATED_VM_SPACE.store(self_ptr);
if !last_ptr.is_null() {
// SAFETY: The pointer is cast from an `Arc` when it's activated
// the last time, so it can be restored and only restored once.
let last = unsafe { Arc::from_raw(last_ptr) };
last.cpus.remove(cpu, Ordering::Relaxed);
}
self.pt.activate();
}
/// Creates a reader to read data from the user space of the current task.
///
/// Returns `Err` if this `VmSpace` doesn't belong to the user space of the current task
/// or the `vaddr` and `len` do not represent a user space memory range.
///
/// Users must ensure that no other page table is activated in the current task during the
/// lifetime of the created `VmReader`. This guarantees that the `VmReader` can operate correctly.
pub fn reader(&self, vaddr: Vaddr, len: usize) -> Result<VmReader<'_, Fallible>> {
if current_page_table_paddr() != self.pt.root_paddr() {
return Err(Error::AccessDenied);
}
if vaddr.checked_add(len).unwrap_or(usize::MAX) > MAX_USERSPACE_VADDR {
return Err(Error::AccessDenied);
}
// SAFETY: The memory range is in user space, as checked above.
Ok(unsafe { VmReader::<Fallible>::from_user_space(vaddr as *const u8, len) })
}
/// Creates a writer to write data into the user space.
///
/// Returns `Err` if this `VmSpace` doesn't belong to the user space of the current task
/// or the `vaddr` and `len` do not represent a user space memory range.
///
/// Users must ensure that no other page table is activated in the current task during the
/// lifetime of the created `VmWriter`. This guarantees that the `VmWriter` can operate correctly.
pub fn writer(&self, vaddr: Vaddr, len: usize) -> Result<VmWriter<'_, Fallible>> {
if current_page_table_paddr() != self.pt.root_paddr() {
return Err(Error::AccessDenied);
}
if vaddr.checked_add(len).unwrap_or(usize::MAX) > MAX_USERSPACE_VADDR {
return Err(Error::AccessDenied);
}
// `VmWriter` is neither `Sync` nor `Send`, so it will not live longer than the current
// task. This ensures that the correct page table is activated during the usage period of
// the `VmWriter`.
//
// SAFETY: The memory range is in user space, as checked above.
Ok(unsafe { VmWriter::<Fallible>::from_user_space(vaddr as *mut u8, len) })
}
/// Creates a reader/writer pair to read data from and write data into the user space.
///
/// Returns `Err` if this `VmSpace` doesn't belong to the user space of the current task
/// or the `vaddr` and `len` do not represent a user space memory range.
///
/// Users must ensure that no other page table is activated in the current task during the
/// lifetime of the created `VmReader` and `VmWriter`. This guarantees that the `VmReader`
/// and the `VmWriter` can operate correctly.
///
/// This method is semantically equivalent to calling [`Self::reader`] and [`Self::writer`]
/// separately, but it avoids double checking the validity of the memory region.
pub fn reader_writer(
&self,
vaddr: Vaddr,
len: usize,
) -> Result<(VmReader<'_, Fallible>, VmWriter<'_, Fallible>)> {
if current_page_table_paddr() != self.pt.root_paddr() {
return Err(Error::AccessDenied);
}
if vaddr.checked_add(len).unwrap_or(usize::MAX) > MAX_USERSPACE_VADDR {
return Err(Error::AccessDenied);
}
// SAFETY: The memory range is in user space, as checked above.
let reader = unsafe { VmReader::<Fallible>::from_user_space(vaddr as *const u8, len) };
// `VmWriter` is neither `Sync` nor `Send`, so it will not live longer than the current
// task. This ensures that the correct page table is activated during the usage period of
// the `VmWriter`.
//
// SAFETY: The memory range is in user space, as checked above.
let writer = unsafe { VmWriter::<Fallible>::from_user_space(vaddr as *mut u8, len) };
Ok((reader, writer))
}
}
impl Default for VmSpace {
fn default() -> Self {
Self::new()
}
}
impl VmSpace {
/// Finds the [`IoMem`] that contains the given physical address.
///
/// It is a private method for internal use only. Please refer to
/// [`CursorMut::find_iomem_by_paddr`] for more details.
fn find_iomem_by_paddr(&self, paddr: Paddr) -> Option<(IoMem, usize)> {
let iomems = self.iomems.lock();
for iomem in iomems.iter() {
let start = iomem.paddr();
let end = start + iomem.size();
if paddr >= start && paddr < end {
let offset = paddr - start;
return Some((iomem.clone(), offset));
}
}
None
}
}
/// The cursor for querying over the VM space without modifying it.
///
/// It exclusively owns a sub-tree of the page table, preventing others from
/// reading or modifying the same sub-tree. Two read-only cursors can not be
/// created from the same virtual address range either.
pub struct Cursor<'a>(page_table::Cursor<'a, UserPtConfig>);
impl Iterator for Cursor<'_> {
type Item = (Range<Vaddr>, Option<VmQueriedItem>);
fn next(&mut self) -> Option<Self::Item> {
self.0
.next()
.map(|(range, item)| (range, item.map(VmQueriedItem::from)))
}
}
impl Cursor<'_> {
/// Queries the mapping at the current virtual address.
///
/// If the cursor is pointing to a valid virtual address that is locked,
/// it will return the virtual address range and the mapped item.
pub fn query(&mut self) -> Result<(Range<Vaddr>, Option<VmQueriedItem>)> {
let (range, item) = self.0.query()?;
Ok((range, item.map(VmQueriedItem::from)))
}
/// Moves the cursor forward to the next mapped virtual address.
///
/// If there is mapped virtual address following the current address within
/// next `len` bytes, it will return that mapped address. In this case,
/// the cursor will stop at the mapped address.
///
/// Otherwise, it will return `None`. And the cursor may stop at any
/// address after `len` bytes.
///
/// # Panics
///
/// Panics if the length is longer than the remaining range of the cursor.
pub fn find_next(&mut self, len: usize) -> Option<Vaddr> {
self.0.find_next(len)
}
/// Jump to the virtual address.
pub fn jump(&mut self, va: Vaddr) -> Result<()> {
self.0.jump(va)?;
Ok(())
}
/// Get the virtual address of the current slot.
pub fn virt_addr(&self) -> Vaddr {
self.0.virt_addr()
}
}
/// The cursor for modifying the mappings in VM space.
///
/// It exclusively owns a sub-tree of the page table, preventing others from
/// reading or modifying the same sub-tree.
pub struct CursorMut<'a> {
pt_cursor: page_table::CursorMut<'a, UserPtConfig>,
// We have a read lock so the CPU set in the flusher is always a superset
// of actual activated CPUs.
flusher: TlbFlusher<'a, DisabledPreemptGuard>,
// References to the `VmSpace`
vmspace: &'a VmSpace,
}
impl<'a> CursorMut<'a> {
/// Queries the mapping at the current virtual address.
///
/// This is the same as [`Cursor::query`].
///
/// If the cursor is pointing to a valid virtual address that is locked,
/// it will return the virtual address range and the mapped item.
pub fn query(&mut self) -> Result<(Range<Vaddr>, Option<VmQueriedItem>)> {
let (range, item) = self.pt_cursor.query()?;
Ok((range, item.map(VmQueriedItem::from)))
}
/// Moves the cursor forward to the next mapped virtual address.
///
/// This is the same as [`Cursor::find_next`].
pub fn find_next(&mut self, len: usize) -> Option<Vaddr> {
self.pt_cursor.find_next(len)
}
/// Jump to the virtual address.
///
/// This is the same as [`Cursor::jump`].
pub fn jump(&mut self, va: Vaddr) -> Result<()> {
self.pt_cursor.jump(va)?;
Ok(())
}
/// Get the virtual address of the current slot.
pub fn virt_addr(&self) -> Vaddr {
self.pt_cursor.virt_addr()
}
/// Get the dedicated TLB flusher for this cursor.
pub fn flusher(&mut self) -> &mut TlbFlusher<'a, DisabledPreemptGuard> {
&mut self.flusher
}
/// Maps a frame into the current slot.
///
/// This method will bring the cursor to the next slot after the modification.
pub fn map(&mut self, frame: UFrame, prop: PageProperty) {
let start_va = self.virt_addr();
let item = VmItem::new_tracked(frame, prop);
// SAFETY: It is safe to map untyped memory into the userspace.
let Err(frag) = (unsafe { self.pt_cursor.map(item) }) else {
return; // No mapping exists at the current address.
};
self.handle_remapped_frag(frag, start_va);
}
/// Maps a range of [`IoMem`] into the current slot.
///
/// The memory region to be mapped is the [`IoMem`] range starting at
/// `offset` and extending to `offset + len`, or to the end of [`IoMem`],
/// whichever comes first. This method will bring the cursor to the next
/// slot after the modification.
///
/// # Limitations
///
/// Once an instance of `IoMem` is mapped to a `VmSpace`,
/// then the `IoMem` instance will only be dropped when the `VmSpace` is
/// dropped, not when all the mappings backed by the `IoMem` are destroyed
/// with the `unmap` method.
///
/// # Panics
///
/// Panics if `len` or `offset` is not aligned to the page size.
pub fn map_iomem(&mut self, io_mem: IoMem, prop: PageProperty, len: usize, offset: usize) {
assert_eq!(len % PAGE_SIZE, 0);
assert_eq!(offset % PAGE_SIZE, 0);
if offset >= io_mem.size() {
return;
}
let paddr_begin = io_mem.paddr() + offset;
let paddr_end = if io_mem.size() - offset < len {
io_mem.paddr() + io_mem.size()
} else {
io_mem.paddr() + len + offset
};
for current_paddr in (paddr_begin..paddr_end).step_by(PAGE_SIZE) {
// Save the current virtual address before mapping, since map() will advance the cursor
let current_va = self.virt_addr();
// SAFETY: It is safe to map I/O memory into the userspace.
let map_result = unsafe {
self.pt_cursor
.map(VmItem::new_untracked_io(current_paddr, prop))
};
let Err(frag) = map_result else {
// No mapping exists at the current address.
continue;
};
self.handle_remapped_frag(frag, current_va);
}
// If the `iomems` list in `VmSpace` does not contain the current I/O
// memory, push it to maintain the correct reference count.
let mut iomems = self.vmspace.iomems.lock();
if !iomems
.iter()
.any(|iomem| iomem.paddr() == io_mem.paddr() && iomem.size() == io_mem.size())
{
iomems.push(io_mem);
}
}
/// Finds an [`IoMem`] that was previously mapped to by [`Self::map_iomem`] and contains the
/// physical address.
///
/// This method can recover the originally mapped `IoMem` from the physical address returned by
/// [`Self::query`]. If the query returns a [`VmQueriedItem::MappedIoMem`], this method is
/// guaranteed to succeed with the specific physical address. However, if the corresponding
/// mapping is subsequently unmapped, it is unspecified whether this method will still succeed
/// or not.
///
/// On success, this method returns the `IoMem` and the offset from the `IoMem` start to the
/// given physical address. Otherwise, this method returns `None`.
pub fn find_iomem_by_paddr(&self, paddr: Paddr) -> Option<(IoMem, usize)> {
self.vmspace.find_iomem_by_paddr(paddr)
}
/// Handles a page table fragment that was remapped.
///
/// This method handles the TLB flushing and other cleanup when a mapping
/// operation results in a fragment being replaced.
fn handle_remapped_frag(&mut self, frag: PageTableFrag<UserPtConfig>, start_va: Vaddr) {
match frag {
PageTableFrag::Mapped { va, item } => {
debug_assert_eq!(va, start_va);
match item.mapped_item {
MappedItem::TrackedFrame(old_frame) => {
self.flusher.issue_tlb_flush_with(
TlbFlushOp::for_single(start_va),
old_frame.into(),
);
}
MappedItem::UntrackedIoMem { .. } => {
// Flush the TLB entry for the current address, but in
// the current design, we cannot drop the corresponding
// `IoMem`. This is because we manage the range of I/O
// as a whole, but the frames handled here might be one
// segment of it.
self.flusher
.issue_tlb_flush(TlbFlushOp::for_single(start_va));
}
}
self.flusher.dispatch_tlb_flush();
}
PageTableFrag::StrayPageTable { .. } => {
panic!("`UFrame` is base page sized but re-mapping out a child PT");
}
}
}
/// Clears the mapping starting from the current slot,
/// and returns the number of unmapped pages.
///
/// This method will bring the cursor forward by `len` bytes in the virtual
/// address space after the modification.
///
/// Already-absent mappings encountered by the cursor will be skipped. It
/// is valid to unmap a range that is not mapped.
///
/// It must issue and dispatch a TLB flush after the operation. Otherwise,
/// the memory safety will be compromised. Please call this function less
/// to avoid the overhead of TLB flush. Using a large `len` is wiser than
/// splitting the operation into multiple small ones.
///
/// # Panics
/// Panics if:
/// - the length is longer than the remaining range of the cursor;
/// - the length is not page-aligned.
pub fn unmap(&mut self, len: usize) -> usize {
let end_va = self.virt_addr() + len;
let mut num_unmapped: usize = 0;
loop {
// SAFETY: It is safe to un-map memory in the userspace.
let Some(frag) = (unsafe { self.pt_cursor.take_next(end_va - self.virt_addr()) })
else {
break; // No more mappings in the range.
};
match frag {
PageTableFrag::Mapped { va, item, .. } => {
match item {
VmItem {
mapped_item: MappedItem::TrackedFrame(old_frame),
..
} => {
num_unmapped += 1;
self.flusher
.issue_tlb_flush_with(TlbFlushOp::for_single(va), old_frame.into());
}
VmItem {
mapped_item: MappedItem::UntrackedIoMem { .. },
..
} => {
// Flush the TLB entry for the current address, but
// in the current design, we cannot drop the
// corresponding `IoMem`. This is because we manage
// the range of I/O as a whole, but the frames
// handled here might be one segment of it.
self.flusher.issue_tlb_flush(TlbFlushOp::for_single(va));
}
}
}
PageTableFrag::StrayPageTable {
pt,
va,
len,
num_frames,
} => {
num_unmapped += num_frames;
self.flusher
.issue_tlb_flush_with(TlbFlushOp::for_range(va..va + len), pt);
}
}
}
self.flusher.dispatch_tlb_flush();
num_unmapped
}
/// Applies the operation to the next slot of mapping within the range.
///
/// The range to be found in is the current virtual address with the
/// provided length.
///
/// The function stops and yields the actually protected range if it has
/// actually protected a page, no matter if the following pages are also
/// required to be protected.
///
/// It also makes the cursor moves forward to the next page after the
/// protected one. If no mapped pages exist in the following range, the
/// cursor will stop at the end of the range and return [`None`].
///
/// Note that it will **NOT** flush the TLB after the operation. Please
/// make the decision yourself on when and how to flush the TLB using
/// [`Self::flusher`].
///
/// # Panics
///
/// Panics if the length is longer than the remaining range of the cursor.
pub fn protect_next(
&mut self,
len: usize,
mut op: impl FnMut(&mut PageFlags, &mut CachePolicy),
) -> Option<Range<Vaddr>> {
// SAFETY: It is safe to set `PageFlags` and `CachePolicy` of memory
// in the userspace.
unsafe {
self.pt_cursor.protect_next(len, &mut |prop| {
op(&mut prop.flags, &mut prop.cache);
})
}
}
}
cpu_local_cell! {
/// The `Arc` pointer to the activated VM space on this CPU. If the pointer
/// is NULL, it means that the activated page table is merely the kernel
/// page table.
// TODO: If we are enabling ASID, we need to maintain the TLB state of each
// CPU, rather than merely the activated `VmSpace`. When ASID is enabled,
// the non-active `VmSpace`s can still have their TLB entries in the CPU!
static ACTIVATED_VM_SPACE: *const VmSpace = core::ptr::null();
}
#[cfg(ktest)]
pub(super) fn get_activated_vm_space() -> *const VmSpace {
ACTIVATED_VM_SPACE.load()
}
/// The result of a query over the VM space.
#[derive(Debug, Clone, PartialEq)]
pub enum VmQueriedItem {
/// The current slot is mapped, the frame within is allocated from the
/// physical memory.
MappedRam {
/// The mapped frame.
frame: UFrame,
/// The property of the slot.
prop: PageProperty,
},
/// The current slot is mapped, the frame within is allocated from the
/// MMIO memory.
MappedIoMem {
/// The physical address of the corresponding I/O memory.
paddr: Paddr,
/// The property of the slot.
prop: PageProperty,
},
}
/// Internal representation of a VM item.
///
/// This is kept private to ensure memory safety. The public interface
/// should use `VmQueriedItem` for querying mapping information.
#[derive(Debug, Clone, PartialEq)]
pub(crate) struct VmItem {
prop: PageProperty,
mapped_item: MappedItem,
}
#[derive(Debug, Clone, PartialEq)]
enum MappedItem {
TrackedFrame(UFrame),
UntrackedIoMem { paddr: Paddr, level: PagingLevel },
}
impl VmItem {
/// Creates a new `VmItem` that maps a tracked frame.
pub(super) fn new_tracked(frame: UFrame, prop: PageProperty) -> Self {
Self {
prop,
mapped_item: MappedItem::TrackedFrame(frame),
}
}
/// Creates a new `VmItem` that maps an untracked I/O memory.
fn new_untracked_io(paddr: Paddr, prop: PageProperty) -> Self {
Self {
prop,
mapped_item: MappedItem::UntrackedIoMem { paddr, level: 1 },
}
}
}
impl From<VmItem> for VmQueriedItem {
fn from(item: VmItem) -> Self {
match item.mapped_item {
MappedItem::TrackedFrame(frame) => VmQueriedItem::MappedRam {
frame,
prop: item.prop,
},
MappedItem::UntrackedIoMem { paddr, level } => {
debug_assert_eq!(level, 1);
VmQueriedItem::MappedIoMem {
paddr,
prop: item.prop,
}
}
}
}
}
#[derive(Clone, Debug)]
pub(crate) struct UserPtConfig {}
// SAFETY: `item_into_raw` and `item_from_raw` are implemented correctly,
unsafe impl PageTableConfig for UserPtConfig {
const TOP_LEVEL_INDEX_RANGE: Range<usize> = 0..256;
type E = PageTableEntry;
type C = PagingConsts;
type Item = VmItem;
fn item_into_raw(item: Self::Item) -> (Paddr, PagingLevel, PageProperty) {
match item.mapped_item {
MappedItem::TrackedFrame(frame) => {
let mut prop = item.prop;
prop.priv_flags -= PrivilegedPageFlags::AVAIL1; // Clear AVAIL1 for tracked frames
let level = frame.map_level();
let paddr = frame.into_raw();
(paddr, level, prop)
}
MappedItem::UntrackedIoMem { paddr, level } => {
let mut prop = item.prop;
prop.priv_flags |= PrivilegedPageFlags::AVAIL1; // Set AVAIL1 for I/O memory
(paddr, level, prop)
}
}
}
unsafe fn item_from_raw(paddr: Paddr, level: PagingLevel, prop: PageProperty) -> Self::Item {
debug_assert_eq!(level, 1);
if prop.priv_flags.contains(PrivilegedPageFlags::AVAIL1) {
// AVAIL1 is set, this is I/O memory.
VmItem::new_untracked_io(paddr, prop)
} else {
// AVAIL1 is clear, this is tracked memory.
// SAFETY: The caller ensures safety.
let frame = unsafe { Frame::<dyn AnyUFrameMeta>::from_raw(paddr) };
VmItem::new_tracked(frame, prop)
}
}
}