ostd/cpu/local/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
// SPDX-License-Identifier: MPL-2.0
//! CPU local storage.
//!
//! This module provides a mechanism to define CPU-local objects. Users can
//! define a statically-allocated CPU-local object by the macro
//! [`crate::cpu_local!`], or allocate a dynamically-allocated CPU-local
//! object with the function `osdk_heap_allocator::alloc_cpu_local`.
//!
//! The mechanism for statically-allocated CPU-local objects exploits the fact
//! that constant values of non-[`Copy`] types can be bitwise copied. For
//! example, a [`Option<T>`] object, though being not [`Copy`], have a constant
//! constructor [`Option::None`] that produces a value that can be bitwise
//! copied to create a new instance. [`alloc::sync::Arc`] however, don't have
//! such a constructor, and thus cannot be directly used as a statically-
//! allocated CPU-local object. Wrapping it in a type that has a constant
//! constructor, like [`Option<T>`], can make it statically-allocated CPU-local.
//!
//! # Implementation
//!
//! These APIs are implemented by the methods as follows:
//! 1. For statically-allocated CPU-local objects, we place them in a special
//! section `.cpu_local`. The bootstrap processor (BSP) uses the objects
//! linked in this section, and these objects are copied to dynamically
//! allocated local storage of each application processors (AP) during the
//! initialization process.
//! 2. For dynamically-allocated CPU-local objects, we prepare a fixed-size
//! chunk for each CPU. These per-CPU memory chunks are laid out contiguously
//! in memory in the order of the CPU IDs. A dynamically-allocated CPU-local
//! object can be allocated by occupying the same offset in each per-CPU
//! memory chunk.
// This module also, provide CPU-local cell objects that have inner mutability.
//
// The difference between statically-allocated CPU-local objects (defined by
// [`crate::cpu_local!`]) and CPU-local cell objects (defined by
// [`crate::cpu_local_cell!`]) is that the CPU-local objects can be shared
// across CPUs. While through a CPU-local cell object you can only access the
// value on the current CPU, therefore enabling inner mutability without locks.
mod cell;
mod dyn_cpu_local;
mod static_cpu_local;
pub(crate) mod single_instr;
use core::{alloc::Layout, marker::PhantomData, ops::Deref};
use align_ext::AlignExt;
pub use cell::CpuLocalCell;
pub use dyn_cpu_local::DynCpuLocalChunk;
use dyn_cpu_local::DynamicStorage;
use spin::Once;
use static_cpu_local::StaticStorage;
use super::CpuId;
use crate::{
mm::{frame::allocator, paddr_to_vaddr, Paddr, PAGE_SIZE},
trap::irq::DisabledLocalIrqGuard,
};
/// Dynamically-allocated CPU-local objects.
pub type DynamicCpuLocal<T> = CpuLocal<T, DynamicStorage<T>>;
/// Statically-allocated CPU-local objects.
pub type StaticCpuLocal<T> = CpuLocal<T, static_cpu_local::StaticStorage<T>>;
// These symbols are provided by the linker script.
extern "C" {
fn __cpu_local_start();
fn __cpu_local_end();
}
/// A trait to abstract any type that can be used as a slot for a CPU-local
/// variable of type `T`.
///
/// Each slot provides the memory space for storing `num_cpus` instances
/// of type `T`.
///
/// # Safety
///
/// The implementor must ensure that the returned pointer refers to the
/// variable on the correct CPU.
pub unsafe trait AnyStorage<T> {
/// Gets the `const` pointer for the object on the current CPU.
fn get_ptr_on_current(&self, guard: &DisabledLocalIrqGuard) -> *const T;
/// Gets the `const` pointer for the object on a target CPU.
fn get_ptr_on_target(&self, cpu: CpuId) -> *const T;
/// Gets the `mut` pointer for the object on a target CPU.
///
/// This method is intended for use when initializing or dropping the storage.
fn get_mut_ptr_on_target(&mut self, cpu: CpuId) -> *mut T;
}
/// A CPU-local variable for type `T`, backed by a storage of type `S`.
///
/// CPU-local objects are instantiated once per CPU core. They can be shared to
/// other cores. In the context of a preemptible kernel task, when holding the
/// reference to the inner object, the object is always the one in the original
/// core (when the reference is created), no matter which core the code is
/// currently running on.
pub struct CpuLocal<T, S: AnyStorage<T>> {
storage: S,
phantom: PhantomData<T>,
}
impl<T: 'static, S: AnyStorage<T>> CpuLocal<T, S> {
/// Gets access to the underlying value on the current CPU with a
/// provided IRQ guard.
///
/// By this method, you can borrow a reference to the underlying value
/// on the current CPU even if `T` is not `Sync`.
pub fn get_with<'a>(
&'a self,
guard: &'a DisabledLocalIrqGuard,
) -> CpuLocalDerefGuard<'a, T, S> {
CpuLocalDerefGuard {
cpu_local: self,
guard,
}
}
}
impl<T: 'static + Sync, S: AnyStorage<T>> CpuLocal<T, S> {
/// Gets access to the CPU-local value on a specific CPU.
///
/// This allows the caller to access CPU-local data from a remote CPU,
/// so the data type must be `Sync`.
pub fn get_on_cpu(&self, target_cpu_id: CpuId) -> &T {
let ptr = self.storage.get_ptr_on_target(target_cpu_id);
// SAFETY: `ptr` represents CPU-local data on a remote CPU. It
// contains valid data, the type is `Sync`, and no one will mutably
// borrow it, so creating an immutable borrow here is valid.
unsafe { &*ptr }
}
}
/// A guard for accessing the CPU-local object.
///
/// It ensures that the CPU-local object is accessed with IRQs disabled.
/// It is created by [`CpuLocal::get_with`].
#[must_use]
pub struct CpuLocalDerefGuard<'a, T: 'static, S: AnyStorage<T>> {
cpu_local: &'a CpuLocal<T, S>,
guard: &'a DisabledLocalIrqGuard,
}
impl<'a, T: 'static, S: AnyStorage<T>> Deref for CpuLocalDerefGuard<'a, T, S> {
type Target = T;
fn deref(&self) -> &'a Self::Target {
is_used::debug_set_true();
let ptr = self.cpu_local.storage.get_ptr_on_current(self.guard);
// SAFETY: `ptr` represents CPU-local data on the current CPU. It
// contains valid data, only the current task can reference the data
// (due to `self.guard`), and no one will mutably borrow it, so
// creating an immutable borrow here is valid.
unsafe { &*ptr }
}
}
// SAFETY: Although multiple tasks may access the inner value `T` of a CPU-local
// variable at different times, only one task can access it at any given moment.
// We guarantee it by disabling the reference to the inner value, or turning off
// preemptions when creating the reference. Therefore, if `T` is `Send`, marking
// `CpuLocal<T, S>` with `Sync` and `Send` only safely transfer ownership of the
// entire `T` instance between tasks.
unsafe impl<T: Send + 'static, S: AnyStorage<T>> Sync for CpuLocal<T, S> {}
unsafe impl<T: Send + 'static> Send for CpuLocal<T, DynamicStorage<T>> {}
// Implement `!Copy` and `!Clone` for `CpuLocal` to ensure memory safety:
// - Prevent valid instances of `CpuLocal<T, StaticStorage<T>>` from being copied
// to any memory areas outside the `.cpu_local` section.
// - Prevent multiple valid instances of `CpuLocal<T, DynamicStorage<T>>` from
// referring to the same CPU-local object, avoiding double deallocation.
impl<T: 'static, S: AnyStorage<T>> !Copy for CpuLocal<T, S> {}
impl<T: 'static, S: AnyStorage<T>> !Clone for CpuLocal<T, S> {}
// In general, it does not make any sense to send instances of static `CpuLocal`
// to other tasks as they should live on other CPUs to make sending useful.
impl<T: 'static> !Send for CpuLocal<T, StaticStorage<T>> {}
/// The static CPU-local areas for APs.
static CPU_LOCAL_STORAGES: Once<&'static [Paddr]> = Once::new();
/// Copies the static CPU-local data on the bootstrap processor (BSP)
/// for application processors (APs).
///
/// # Safety
///
/// This function must be called in the boot context of the BSP, at a time
/// when the APs have not yet booted.
///
/// The CPU-local data on the BSP must not be used before calling this
/// function to copy it for the APs. Otherwise, the copied data will
/// contain non-constant (also non-`Copy`) data, resulting in undefined
/// behavior when it's loaded on the APs.
///
/// The caller must ensure that the `num_cpus` matches the number of all
/// CPUs that will access the CPU-local storage.
pub(crate) unsafe fn copy_bsp_for_ap(num_cpus: usize) {
let num_aps = num_cpus - 1; // BSP does not need allocated storage.
if num_aps == 0 {
return;
}
// Allocate a region to store the pointers to the CPU-local storage segments.
let res = {
let size = core::mem::size_of::<Paddr>()
.checked_mul(num_aps)
.unwrap()
.align_up(PAGE_SIZE);
let addr =
allocator::early_alloc(Layout::from_size_align(size, PAGE_SIZE).unwrap()).unwrap();
let ptr = paddr_to_vaddr(addr) as *mut Paddr;
// SAFETY: The memory is properly allocated. We exclusively own it. So it's valid to write.
unsafe {
core::ptr::write_bytes(ptr as *mut u8, 0, size);
}
// SAFETY: The memory is properly allocated and initialized. We exclusively own it. We
// never deallocate it so it lives for '`static'. So we can create a mutable slice on it.
unsafe { core::slice::from_raw_parts_mut(ptr, num_aps) }
};
let bsp_base_va = __cpu_local_start as usize;
let bsp_end_va = __cpu_local_end as usize;
// Allocate the CPU-local storage segments for APs.
for res_addr_mut in res.iter_mut() {
let nbytes = (bsp_end_va - bsp_base_va).align_up(PAGE_SIZE);
let ap_pages =
allocator::early_alloc(Layout::from_size_align(nbytes, PAGE_SIZE).unwrap()).unwrap();
let ap_pages_ptr = paddr_to_vaddr(ap_pages) as *mut u8;
// SAFETY:
// 1. The source is valid to read because it has not been used before,
// so it contains only constants.
// 2. The destination is valid to write because it is just allocated.
// 3. The memory is aligned because the alignment of `u8` is 1.
// 4. The two memory regions do not overlap because allocated memory
// regions never overlap with the kernel data.
unsafe {
core::ptr::copy_nonoverlapping(bsp_base_va as *const u8, ap_pages_ptr, nbytes);
}
*res_addr_mut = ap_pages;
}
is_used::debug_assert_false();
assert!(!CPU_LOCAL_STORAGES.is_completed());
CPU_LOCAL_STORAGES.call_once(|| res);
}
/// Gets the pointer to the static CPU-local storage for the given AP.
///
/// # Panics
///
/// This method will panic if the `cpu_id` does not represent an AP or the AP's CPU-local storage
/// has not been allocated.
pub(crate) fn get_ap(cpu_id: CpuId) -> Paddr {
let offset = cpu_id
.as_usize()
.checked_sub(1)
.expect("The BSP does not have allocated CPU-local storage");
let paddr = CPU_LOCAL_STORAGES
.get()
.expect("No CPU-local storage has been allocated")[offset];
assert_ne!(
paddr,
0,
"The CPU-local storage for CPU {} is not allocated",
cpu_id.as_usize(),
);
paddr
}
mod is_used {
//! This module tracks whether any statically-allocated CPU-local
//! variables are used.
//!
//! [`copy_bsp_for_ap`] copies the CPU local data from the BSP
//! to the APs, so it requires as a safety condition that the
//! CPU-local data has not been accessed before the copy. This
//! module provides utilities to check if the safety condition
//! is met, but only if debug assertions are enabled.
//!
//! [`copy_bsp_for_ap`]: super::copy_bsp_for_ap
cfg_if::cfg_if! {
if #[cfg(debug_assertions)] {
use core::sync::atomic::{AtomicBool, Ordering};
static IS_USED: AtomicBool = AtomicBool::new(false);
pub fn debug_set_true() {
IS_USED.store(true, Ordering::Relaxed);
}
pub fn debug_assert_false() {
debug_assert!(!IS_USED.load(Ordering::Relaxed));
}
} else {
pub fn debug_set_true() {}
pub fn debug_assert_false() {}
}
}
}
#[cfg(ktest)]
mod test {
use core::cell::RefCell;
use ostd_macros::ktest;
#[ktest]
fn test_cpu_local() {
crate::cpu_local! {
static FOO: RefCell<usize> = RefCell::new(1);
}
let irq_guard = crate::trap::irq::disable_local();
let foo_guard = FOO.get_with(&irq_guard);
assert_eq!(*foo_guard.borrow(), 1);
*foo_guard.borrow_mut() = 2;
assert_eq!(*foo_guard.borrow(), 2);
drop(foo_guard);
}
#[ktest]
fn test_cpu_local_cell() {
crate::cpu_local_cell! {
static BAR: usize = 3;
}
let _guard = crate::trap::irq::disable_local();
assert_eq!(BAR.load(), 3);
BAR.store(4);
assert_eq!(BAR.load(), 4);
}
}