ostd/cpu/id.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
// SPDX-License-Identifier: MPL-2.0
//! CPU identification numbers.
pub use current::PinCurrentCpu;
pub use set::{AtomicCpuSet, CpuSet};
use crate::util::id_set::Id;
/// The ID of a CPU in the system.
///
/// If converting from/to an integer, the integer must start from 0 and be less
/// than the number of CPUs.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct CpuId(u32);
impl CpuId {
/// Creates a new instance.
///
/// # Panics
///
/// The given number must be smaller than the total number of CPUs
/// (`ostd::cpu::num_cpus()`).
pub fn new(raw_id: u32) -> Self {
assert!(raw_id < num_cpus() as u32);
// SAFETY: The raw ID is smaller than `num_cpus()`.
unsafe { Self::new_unchecked(raw_id) }
}
/// Returns the CPU ID of the bootstrap processor (BSP).
///
/// The number for the BSP is always zero.
pub const fn bsp() -> Self {
// BSP's `CURRENT_CPU` is assigned a value of 0.
let bsp_raw_cpu_id = 0;
// SAFETY: There is at least one CPU.
Self(bsp_raw_cpu_id)
}
}
impl From<CpuId> for u32 {
fn from(cpu_id: CpuId) -> Self {
cpu_id.0
}
}
/// The error type returned when converting an out-of-range integer to [`CpuId`].
#[derive(Debug, Clone, Copy)]
pub struct CpuIdFromIntError;
impl TryFrom<usize> for CpuId {
type Error = CpuIdFromIntError;
fn try_from(raw_id: usize) -> Result<Self, Self::Error> {
if raw_id < num_cpus() {
// SAFETY: The raw ID is smaller than `num_cpus()`.
let new_self = unsafe { CpuId::new_unchecked(raw_id as u32) };
Ok(new_self)
} else {
Err(CpuIdFromIntError)
}
}
}
/// Returns the number of CPUs.
pub fn num_cpus() -> usize {
// SAFETY: As far as the safe APIs are concerned, `NUM_CPUS` is
// read-only, so it is always valid to read.
(unsafe { NUM_CPUS }) as usize
}
static mut NUM_CPUS: u32 = 1;
/// Returns an iterator over all CPUs.
pub fn all_cpus() -> impl Iterator<Item = CpuId> {
(0..num_cpus()).map(|raw_id| {
// SAFETY: The raw ID is smaller than `num_cpus()`.
unsafe { CpuId::new_unchecked(raw_id as u32) }
})
}
mod set {
use super::{num_cpus, CpuId};
use crate::util::id_set::{AtomicIdSet, Id, IdSet};
/// A set of CPU IDs.
pub type CpuSet = IdSet<CpuId>;
/// A set of CPU IDs, with support for concurrent access.
pub type AtomicCpuSet = AtomicIdSet<CpuId>;
// SAFETY: `CpuId`s and the integers within 0 to `num_cpus` (exclusive)
// have 1:1 mapping.
unsafe impl Id for CpuId {
unsafe fn new_unchecked(raw_id: u32) -> Self {
Self(raw_id)
}
fn cardinality() -> u32 {
num_cpus() as u32
}
}
}
mod current {
//! The current CPU ID.
use super::CpuId;
use crate::{cpu_local_cell, task::atomic_mode::InAtomicMode, util::id_set::Id};
/// A marker trait for guard types that can "pin" the current task to the
/// current CPU.
///
/// Such guard types include [`DisabledLocalIrqGuard`] and
/// [`DisabledPreemptGuard`]. When such guards exist, the CPU executing the
/// current task is pinned. So getting the current CPU ID or CPU-local
/// variables are safe.
///
/// # Safety
///
/// The implementor must ensure that the current task is pinned to the current
/// CPU while any one of the instances of the implemented structure exists.
///
/// [`DisabledLocalIrqGuard`]: crate::irq::DisabledLocalIrqGuard
/// [`DisabledPreemptGuard`]: crate::task::DisabledPreemptGuard
pub unsafe trait PinCurrentCpu {
/// Returns the ID of the current CPU.
fn current_cpu(&self) -> CpuId {
CpuId::current_racy()
}
}
// SAFETY: A guard that enforces the atomic mode requires disabling any
// context switching. So naturally, the current task is pinned on the CPU.
unsafe impl<T: InAtomicMode> PinCurrentCpu for T {}
unsafe impl PinCurrentCpu for dyn InAtomicMode + '_ {}
impl CpuId {
/// Returns the ID of the current CPU.
///
/// This function is safe to call, but is vulnerable to races. The returned CPU
/// ID may be outdated if the task migrates to another CPU.
///
/// To ensure that the CPU ID is up-to-date, do it under any guards that
/// implement the [`PinCurrentCpu`] trait.
pub fn current_racy() -> Self {
#[cfg(debug_assertions)]
assert!(IS_CURRENT_CPU_INITED.load());
let current_raw_id = CURRENT_CPU.load();
// SAFETY: The CPU-local value is initialized to a correct one.
unsafe { Self::new_unchecked(current_raw_id) }
}
}
/// Initializes the module on the current CPU.
///
/// Note that this method will use the current CPU's CPU-local storage.
///
/// # Safety
///
/// The caller must ensure:
/// 1. This method is called on each CPU in the boot context.
/// 2. The CPU ID for the current CPU is correct.
pub(super) unsafe fn init_on_cpu(current_cpu_id: u32) {
// FIXME: If there are safe APIs that rely on the correctness of
// the CPU ID for soundness, we'd better make the CPU ID a global
// invariant and initialize it before entering `ap_early_entry`.
CURRENT_CPU.store(current_cpu_id);
#[cfg(debug_assertions)]
IS_CURRENT_CPU_INITED.store(true);
}
cpu_local_cell! {
/// The current CPU ID.
pub(super) static CURRENT_CPU: u32 = 0;
/// The initialization state of the current CPU ID.
#[cfg(debug_assertions)]
pub(super) static IS_CURRENT_CPU_INITED: bool = false;
}
}
/// Initializes the CPU ID module (the BSP part).
///
/// Note that this method will use the BSP's CPU-local storage.
///
/// # Safety
///
/// The caller must ensure that
/// 1. We're in the boot context of the BSP and APs have not yet booted.
/// 2. The number of CPUs is correct.
pub(super) unsafe fn init_on_bsp(num_cpus: u32) {
// SAFETY:
// 1. We're in the boot context of the BSP.
// 2. The CPU ID of BSP has a value of zero.
unsafe { current::init_on_cpu(0) };
// SAFETY:
// 1. We're in the boot context of the BSP and APs have not yet booted.
// 2. The number of CPUs is correct.
unsafe { init_num_cpus(num_cpus) };
}
/// Initializes the number of CPUs.
///
/// The number of CPUs is a fixed value,
/// since we don't support CPU hot-plugging.
///
/// # Safety
///
/// The caller must ensure that
/// 1. We're in the boot context of the BSP and APs have not yet booted.
/// 2. The number of CPUs is correct.
unsafe fn init_num_cpus(num_cpus: u32) {
// Thanks to this assertion,
// it's only legal to call this function to
// increase the number of CPUs from one (the initial value)
// to the actual number of CPUs.
assert!(num_cpus >= 1);
// SAFETY: It is safe to mutate this global variable because we
// are in the boot context.
unsafe { NUM_CPUS = num_cpus };
}
/// Initializes the CPU ID module (the AP part).
///
/// Note that this method will use the BSP's CPU-local storage.
/// This should be fine
/// because `crate::cpu::init_on_bsp` must have been invoked before APs boot.
///
/// # Safety
///
/// The caller must ensure that:
/// 1. We're in the boot context of an AP.
/// 2. The CPU ID of the AP is correct.
pub(super) unsafe fn init_on_ap(cpu_id: u32) {
// SAFETY:
// 1. We're in the boot context of the AP.
// 2. The CPU ID for the AP is correct.
unsafe { current::init_on_cpu(cpu_id) };
}