1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
// SPDX-License-Identifier: MPL-2.0

//! CPU local storage.
//!
//! This module provides a mechanism to define CPU-local objects.
//!
//! This is acheived by placing the CPU-local objects in a special section
//! `.cpu_local`. The bootstrap processor (BSP) uses the objects linked in this
//! section, and these objects are copied to dynamically allocated local
//! storage of each application processors (AP) during the initialization
//! process.
//!
//! Such a mechanism exploits the fact that constant values of non-[`Copy`]
//! types can be bitwise copied. For example, a [`Option<T>`] object, though
//! being not [`Copy`], have a constant constructor [`Option::None`] that
//! produces a value that can be bitwise copied to create a new instance.
//! [`alloc::sync::Arc`] however, don't have such a constructor, and thus cannot
//! be directly used as a CPU-local object. Wrapping it in a type that has a
//! constant constructor, like [`Option<T>`], can make it CPU-local.

use core::ops::Deref;

use crate::{
    cpu::{get_cpu_local_base, set_cpu_local_base},
    trap::{disable_local, DisabledLocalIrqGuard},
};

/// Defines a CPU-local variable.
///
/// # Example
///
/// ```rust
/// use crate::cpu_local;
/// use core::cell::RefCell;
///
/// cpu_local! {
///     static FOO: RefCell<u32> = RefCell::new(1);
///
///     #[allow(unused)]
///     pub static BAR: RefCell<f32> = RefCell::new(1.0);
/// }
///
/// println!("FOO VAL: {:?}", *FOO.borrow());
/// ```
#[macro_export]
macro_rules! cpu_local {
    ($( $(#[$attr:meta])* $vis:vis static $name:ident: $t:ty = $init:expr; )*) => {
        $(
            #[link_section = ".cpu_local"]
            $(#[$attr])* $vis static $name: $crate::CpuLocal<$t> = {
                let val = $init;
                // SAFETY: The CPU local variable instantiated is statically
                // stored in the special `.cpu_local` section.
                unsafe {
                    $crate::CpuLocal::__new(val)
                }
            };
        )*
    };
}

/// CPU-local objects.
///
/// A CPU-local object only gives you immutable references to the underlying value.
/// To mutate the value, one can use atomic values (e.g., [`AtomicU32`]) or internally mutable
/// objects (e.g., [`RefCell`]).
///
/// [`AtomicU32`]: core::sync::atomic::AtomicU32
/// [`RefCell`]: core::cell::RefCell
pub struct CpuLocal<T>(T);

// SAFETY: At any given time, only one task can access the inner value T
// of a cpu-local variable even if `T` is not `Sync`.
unsafe impl<T> Sync for CpuLocal<T> {}

// Prevent valid instances of CpuLocal from being copied to any memory
// area outside the .cpu_local section.
impl<T> !Copy for CpuLocal<T> {}
impl<T> !Clone for CpuLocal<T> {}

// In general, it does not make any sense to send instances of CpuLocal to
// other tasks as they should live on other CPUs to make sending useful.
impl<T> !Send for CpuLocal<T> {}

impl<T> CpuLocal<T> {
    /// Initialize a CPU-local object.
    ///
    /// Please do not call this function directly. Instead, use the
    /// `cpu_local!` macro.
    ///
    /// # Safety
    ///
    /// The caller should ensure that the object initialized by this
    /// function resides in the `.cpu_local` section. Otherwise the
    /// behavior is undefined.
    #[doc(hidden)]
    pub const unsafe fn __new(val: T) -> Self {
        Self(val)
    }

    /// Get access to the underlying value with IRQs disabled.
    ///
    /// By this method, you can borrow a reference to the underlying value
    /// even if `T` is not `Sync`. Because that it is per-CPU and IRQs are
    /// disabled, no other running task can access it.
    pub fn borrow_irq_disabled(&self) -> CpuLocalDerefGuard<'_, T> {
        CpuLocalDerefGuard {
            cpu_local: self,
            _guard: disable_local(),
        }
    }

    /// Get access to the underlying value through a raw pointer.
    ///
    /// This function calculates the virtual address of the CPU-local object based on the per-
    /// cpu base address and the offset in the BSP.
    fn get(&self) -> *const T {
        let offset = {
            let bsp_va = self as *const _ as usize;
            let bsp_base = __cpu_local_start as usize;
            // The implementation should ensure that the CPU-local object resides in the `.cpu_local`.
            debug_assert!(bsp_va + core::mem::size_of::<T>() <= __cpu_local_end as usize);

            bsp_va - bsp_base as usize
        };

        let local_base = get_cpu_local_base() as usize;
        let local_va = local_base + offset;

        // A sanity check about the alignment.
        debug_assert_eq!(local_va % core::mem::align_of::<T>(), 0);

        local_va as *mut T
    }
}

// Considering a preemptive kernel, a CPU-local object may be dereferenced
// when another task tries to access it. So, we need to ensure that `T` is
// `Sync` before allowing it to be dereferenced.
impl<T: Sync> Deref for CpuLocal<T> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        // SAFETY: it should be properly initialized before accesses.
        // And we do not create a mutable reference over it. It is
        // `Sync` so it can be referenced from this task.
        unsafe { &*self.get() }
    }
}

/// A guard for accessing the CPU-local object.
///
/// It ensures that the CPU-local object is accessed with IRQs
/// disabled. It is created by [`CpuLocal::borrow_irq_disabled`].
/// Do not hold this guard for a long time.
#[must_use]
pub struct CpuLocalDerefGuard<'a, T> {
    cpu_local: &'a CpuLocal<T>,
    _guard: DisabledLocalIrqGuard,
}

impl<T> Deref for CpuLocalDerefGuard<'_, T> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        // SAFETY: it should be properly initialized before accesses.
        // And we do not create a mutable reference over it. The IRQs
        // are disabled so it can be referenced from this task.
        unsafe { &*self.cpu_local.get() }
    }
}

/// Initializes the CPU local data for the bootstrap processor (BSP).
///
/// # Safety
///
/// This function can only called on the BSP, for once.
///
/// It must be guaranteed that the BSP will not access local data before
/// this function being called, otherwise copying non-constant values
/// will result in pretty bad undefined behavior.
pub unsafe fn init_on_bsp() {
    let start_base_va = __cpu_local_start as usize as u64;
    set_cpu_local_base(start_base_va);
}

// These symbols are provided by the linker script.
extern "C" {
    fn __cpu_local_start();
    fn __cpu_local_end();
}

#[cfg(ktest)]
mod test {
    use core::{
        cell::RefCell,
        sync::atomic::{AtomicU8, Ordering},
    };

    use ostd_macros::ktest;

    use super::*;

    #[ktest]
    fn test_cpu_local() {
        cpu_local! {
            static FOO: RefCell<usize> = RefCell::new(1);
            static BAR: AtomicU8 = AtomicU8::new(3);
        }
        for _ in 0..10 {
            let foo_guard = FOO.borrow_irq_disabled();
            assert_eq!(*foo_guard.borrow(), 1);
            *foo_guard.borrow_mut() = 2;
            drop(foo_guard);
            for _ in 0..10 {
                assert_eq!(BAR.load(Ordering::Relaxed), 3);
                BAR.store(4, Ordering::Relaxed);
                assert_eq!(BAR.load(Ordering::Relaxed), 4);
                BAR.store(3, Ordering::Relaxed);
            }
            let foo_guard = FOO.borrow_irq_disabled();
            assert_eq!(*foo_guard.borrow(), 2);
            *foo_guard.borrow_mut() = 1;
            drop(foo_guard);
        }
    }
}