ostd/arch/x86/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
// SPDX-License-Identifier: MPL-2.0
//! Platform-specific code for the x86 platform.
pub mod boot;
pub mod cpu;
pub mod device;
pub(crate) mod ex_table;
pub(crate) mod io;
pub(crate) mod iommu;
pub(crate) mod irq;
pub mod kernel;
pub(crate) mod mm;
pub(crate) mod pci;
pub mod qemu;
pub(crate) mod serial;
pub(crate) mod task;
pub mod timer;
pub mod trap;
#[cfg(feature = "cvm_guest")]
pub(crate) mod tdx_guest;
#[cfg(feature = "cvm_guest")]
pub(crate) fn init_cvm_guest() {
match ::tdx_guest::init_tdx() {
Ok(td_info) => {
crate::early_println!(
"[kernel] Intel TDX initialized\n[kernel] td gpaw: {}, td attributes: {:?}",
td_info.gpaw,
td_info.attributes
);
}
Err(::tdx_guest::tdcall::InitError::TdxGetVpInfoError(td_call_error)) => {
panic!(
"[kernel] Intel TDX not initialized, Failed to get TD info: {:?}",
td_call_error
);
}
// The machine has no TDX support.
Err(_) => {}
}
}
/// Architecture-specific initialization on the bootstrapping processor.
///
/// It should be called when the heap and frame allocators are available.
///
/// # Safety
///
/// This function must be called only once in the boot context of the
/// bootstrapping processor.
pub(crate) unsafe fn late_init_on_bsp() {
// SAFETY: This function is only called once on BSP.
unsafe { trap::init() };
let io_mem_builder = io::construct_io_mem_allocator_builder();
kernel::apic::init(&io_mem_builder).expect("APIC doesn't exist");
kernel::irq::init(&io_mem_builder);
kernel::tsc::init_tsc_freq();
timer::init_bsp();
// SAFETY: We're on the BSP and we're ready to boot all APs.
unsafe { crate::boot::smp::boot_all_aps() };
if_tdx_enabled!({
} else {
match iommu::init(&io_mem_builder) {
Ok(_) => {}
Err(err) => log::warn!("IOMMU initialization error:{:?}", err),
}
});
// SAFETY:
// 1. All the system device memory have been removed from the builder.
// 2. All the port I/O regions belonging to the system device are defined using the macros.
// 3. `MAX_IO_PORT` defined in `crate::arch::io` is the maximum value specified by x86-64.
unsafe { crate::io::init(io_mem_builder) };
}
/// Architecture-specific initialization on the application processor.
///
/// # Safety
///
/// This function must be called only once on each application processor.
/// And it should be called after the BSP's call to [`init_on_bsp`].
///
/// [`init_on_bsp`]: crate::cpu::init_on_bsp
pub(crate) unsafe fn init_on_ap() {
timer::init_ap();
}
pub(crate) fn interrupts_ack(irq_number: usize) {
if !cpu::context::CpuException::is_cpu_exception(irq_number) {
// TODO: We're in the interrupt context, so `disable_preempt()` is not
// really necessary here.
kernel::apic::get_or_init(&crate::task::disable_preempt() as _).eoi();
}
}
/// Returns the frequency of TSC. The unit is Hz.
pub fn tsc_freq() -> u64 {
use core::sync::atomic::Ordering;
kernel::tsc::TSC_FREQ.load(Ordering::Acquire)
}
/// Reads the current value of the processor’s time-stamp counter (TSC).
pub fn read_tsc() -> u64 {
use core::arch::x86_64::_rdtsc;
// SAFETY: It is safe to read a time-related counter.
unsafe { _rdtsc() }
}
/// Reads a hardware generated 64-bit random value.
///
/// Returns `None` if no random value was generated.
pub fn read_random() -> Option<u64> {
use core::arch::x86_64::_rdrand64_step;
use cpu::extension::{has_extensions, IsaExtensions};
if !has_extensions(IsaExtensions::RDRAND) {
return None;
}
// Recommendation from "Intel(R) Digital Random Number Generator (DRNG) Software
// Implementation Guide" - Section 5.2.1 and "Intel(R) 64 and IA-32 Architectures
// Software Developer's Manual" - Volume 1 - Section 7.3.17.1.
const RETRY_LIMIT: usize = 10;
for _ in 0..RETRY_LIMIT {
let mut val = 0;
let generated = unsafe { _rdrand64_step(&mut val) };
if generated == 1 {
return Some(val);
}
}
None
}
pub(crate) fn enable_cpu_features() {
use cpu::extension::{has_extensions, IsaExtensions};
use x86_64::registers::{
control::{Cr0Flags, Cr4Flags},
model_specific::EferFlags,
xcontrol::XCr0Flags,
};
cpu::extension::init();
let mut cr0 = x86_64::registers::control::Cr0::read();
cr0 |= Cr0Flags::WRITE_PROTECT;
// These FPU control bits should be set for new CPUs (e.g., all CPUs with 64-bit support) and
// modern OSes. See recommendation from "Intel(R) 64 and IA-32 Architectures Software
// Developer's Manual" - Volume 3 - Section 10.2.1, Configuring the x87 FPU Environment.
cr0 |= Cr0Flags::NUMERIC_ERROR | Cr0Flags::MONITOR_COPROCESSOR;
unsafe { x86_64::registers::control::Cr0::write(cr0) };
let mut cr4 = x86_64::registers::control::Cr4::read();
cr4 |= Cr4Flags::OSFXSR | Cr4Flags::OSXMMEXCPT_ENABLE | Cr4Flags::PAGE_GLOBAL;
if has_extensions(IsaExtensions::XSAVE) {
cr4 |= Cr4Flags::OSXSAVE;
}
// For now, we unconditionally require the `rdfsbase`, `wrfsbase`, `rdgsbase`, and `wrgsbase`
// instructions because they are used when switching contexts, getting the address of a
// CPU-local variable, e.t.c. Meanwhile, this is at a very early stage of the boot process, so
// we want to avoid failing immediately even if we cannot enable these instructions (though the
// kernel will certainly fail later when they are absent).
//
// Note that this also enables the userspace to control their own FS/GS bases, which requires
// the kernel to properly deal with the arbitrary base values set by the userspace program.
if has_extensions(IsaExtensions::FSGSBASE) {
cr4 |= Cr4Flags::FSGSBASE;
}
unsafe { x86_64::registers::control::Cr4::write(cr4) };
if has_extensions(IsaExtensions::XSAVE) {
let mut xcr0 = x86_64::registers::xcontrol::XCr0::read();
xcr0 |= XCr0Flags::SSE;
if has_extensions(IsaExtensions::AVX) {
xcr0 |= XCr0Flags::AVX;
}
if has_extensions(IsaExtensions::AVX512F) {
xcr0 |= XCr0Flags::OPMASK | XCr0Flags::ZMM_HI256 | XCr0Flags::HI16_ZMM;
}
unsafe { x86_64::registers::xcontrol::XCr0::write(xcr0) };
}
cpu::context::enable_essential_features();
unsafe {
// Enable non-executable page protection.
x86_64::registers::model_specific::Efer::update(|efer| {
*efer |= EferFlags::NO_EXECUTE_ENABLE;
});
}
}
/// Inserts a TDX-specific code block.
///
/// This macro conditionally executes a TDX-specific code block based on the following conditions:
/// (1) The `cvm_guest` feature is enabled at compile time.
/// (2) The TDX feature is detected at runtime via `::tdx_guest::tdx_is_enabled()`.
///
/// If both conditions are met, the `if_block` is executed. If an `else_block` is provided, it will be executed
/// when either the `cvm_guest` feature is not enabled or the TDX feature is not detected at runtime.
#[macro_export]
macro_rules! if_tdx_enabled {
// Match when there is an else block
($if_block:block else $else_block:block) => {{
#[cfg(feature = "cvm_guest")]
{
if ::tdx_guest::tdx_is_enabled() {
$if_block
} else {
$else_block
}
}
#[cfg(not(feature = "cvm_guest"))]
{
$else_block
}
}};
// Match when there is no else block
($if_block:block) => {{
#[cfg(feature = "cvm_guest")]
{
if ::tdx_guest::tdx_is_enabled() {
$if_block
}
}
}};
}
pub use if_tdx_enabled;