ostd/arch/x86/cpu/context/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
// SPDX-License-Identifier: MPL-2.0
//! CPU execution context control.
use alloc::boxed::Box;
use core::arch::x86_64::{_fxrstor64, _fxsave64, _xrstor64, _xsave64};
use bitflags::bitflags;
use cfg_if::cfg_if;
use log::debug;
use ostd_pod::Pod;
use spin::Once;
use x86::bits64::segmentation::wrfsbase;
use x86_64::registers::{
control::{Cr0, Cr0Flags},
rflags::RFlags,
xcontrol::XCr0,
};
use crate::{
arch::trap::{RawUserContext, TrapFrame},
mm::Vaddr,
task::scheduler,
trap::call_irq_callback_functions,
user::{ReturnReason, UserContextApi, UserContextApiInternal},
};
cfg_if! {
if #[cfg(feature = "cvm_guest")] {
mod tdx;
use tdx::VirtualizationExceptionHandler;
}
}
/// Userspace CPU context, including general-purpose registers and exception information.
#[derive(Clone, Default, Debug)]
#[repr(C)]
pub struct UserContext {
user_context: RawUserContext,
exception: Option<CpuException>,
}
/// General registers.
#[derive(Debug, Default, Clone, Copy, Eq, PartialEq)]
#[repr(C)]
#[expect(missing_docs)]
pub struct GeneralRegs {
pub rax: usize,
pub rbx: usize,
pub rcx: usize,
pub rdx: usize,
pub rsi: usize,
pub rdi: usize,
pub rbp: usize,
pub rsp: usize,
pub r8: usize,
pub r9: usize,
pub r10: usize,
pub r11: usize,
pub r12: usize,
pub r13: usize,
pub r14: usize,
pub r15: usize,
pub rip: usize,
pub rflags: usize,
pub fsbase: usize,
pub gsbase: usize,
}
/// Architectural CPU exceptions (x86-64 vectors 0-31).
///
/// For the authoritative specification of each vector, see the
/// Intel® 64 and IA-32 Architectures Software Developer’s Manual,
/// Volume 3 “System Programming Guide”, Chapter 6 “Interrupt and Exception
/// Handling”, in particular Section 6.15 “Exception and Interrupt
/// Reference”.
///
/// Every enum variant corresponds to one exception defined by the
/// Intel/AMD architecture.
/// Variants that naturally carry an error code (or other error information)
/// expose it through their associated data fields.
//
// TODO: Some exceptions (like `AlignmentCheck`) also push an
// error code onto the stack, but that detail is not yet represented
// in this type definition.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum CpuException {
/// 0 – #DE Divide-by-zero error.
DivisionError,
/// 1 – #DB Debug.
Debug,
/// 2 – NMI Non-maskable interrupt.
NonMaskableInterrupt,
/// 3 – #BP Breakpoint (INT3).
BreakPoint,
/// 4 – #OF Overflow.
Overflow,
/// 5 – #BR Bound-range exceeded.
BoundRangeExceeded,
/// 6 – #UD Invalid or undefined opcode.
InvalidOpcode,
/// 7 – #NM Device not available (FPU/MMX/SSE disabled).
DeviceNotAvailable,
/// 8 – #DF Double fault (always pushes an error code of 0).
DoubleFault,
/// 9 – Coprocessor segment overrun (reserved on modern CPUs).
CoprocessorSegmentOverrun,
/// 10 – #TS Invalid TSS.
InvalidTss(SelectorErrorCode),
/// 11 – #NP Segment not present.
SegmentNotPresent(SelectorErrorCode),
/// 12 – #SS Stack-segment fault.
StackSegmentFault(SelectorErrorCode),
/// 13 – #GP General protection fault
GeneralProtectionFault(Option<SelectorErrorCode>),
/// 14 – #PF Page fault.
PageFault(RawPageFaultInfo),
// 15: Reserved
/// 16 – #MF x87 floating-point exception.
X87FloatingPointException,
/// 17 – #AC Alignment check.
AlignmentCheck,
/// 18 – #MC Machine check.
MachineCheck,
/// 19 – #XM / #XF SIMD/FPU floating-point exception.
SIMDFloatingPointException,
/// 20 – #VE Virtualization exception.
VirtualizationException,
/// 21 – #CP Control protection exception (CET).
ControlProtectionException,
// 22-27: Reserved
/// 28 – #HV Hypervisor injection exception.
HypervisorInjectionException,
/// 29 – #VC VMM communication exception (SEV-ES GHCB).
VMMCommunicationException,
/// 30 – #SX Security exception.
SecurityException,
// 31: Reserved
/// Catch-all for reserved or undefined vector numbers.
Reserved,
}
impl CpuException {
pub(crate) fn new(trap_num: usize, error_code: usize) -> Option<Self> {
let exception = match trap_num {
0 => Self::DivisionError,
1 => Self::Debug,
2 => Self::NonMaskableInterrupt,
3 => Self::BreakPoint,
4 => Self::Overflow,
5 => Self::BoundRangeExceeded,
6 => Self::InvalidOpcode,
7 => Self::DeviceNotAvailable,
8 => {
// A double fault will always generate an error code with a value of zero.
debug_assert_eq!(error_code, 0);
Self::DoubleFault
}
9 => Self::CoprocessorSegmentOverrun,
10 => Self::InvalidTss(SelectorErrorCode(error_code)),
11 => Self::SegmentNotPresent(SelectorErrorCode(error_code)),
12 => Self::StackSegmentFault(SelectorErrorCode(error_code)),
13 => {
let error_code = if error_code == 0 {
None
} else {
Some(SelectorErrorCode(error_code))
};
Self::GeneralProtectionFault(error_code)
}
14 => {
let page_fault_addr = x86_64::registers::control::Cr2::read_raw() as usize;
Self::PageFault(RawPageFaultInfo {
error_code: PageFaultErrorCode::from_bits(error_code).unwrap(),
addr: page_fault_addr,
})
}
// Reserved 15
16 => Self::X87FloatingPointException,
17 => Self::AlignmentCheck,
18 => Self::MachineCheck,
19 => Self::SIMDFloatingPointException,
20 => Self::VirtualizationException,
21 => Self::ControlProtectionException,
// Reserved 22-27
28 => Self::HypervisorInjectionException,
29 => Self::VMMCommunicationException,
30 => Self::SecurityException,
// Reserved 31
15 | 22..=27 | 31 => Self::Reserved,
_ => return None,
};
Some(exception)
}
const fn type_(&self) -> CpuExceptionType {
match self {
Self::Debug => CpuExceptionType::FaultOrTrap,
Self::NonMaskableInterrupt => CpuExceptionType::Interrupt,
Self::BreakPoint | Self::Overflow => CpuExceptionType::Trap,
Self::DoubleFault | Self::MachineCheck => CpuExceptionType::Abort,
Self::Reserved => CpuExceptionType::Reserved,
_ => CpuExceptionType::Fault,
}
}
pub(crate) const fn is_cpu_exception(trap_num: usize) -> bool {
trap_num <= 31
}
}
/// Selector error code.
///
/// Reference: <https://wiki.osdev.org/Exceptions#Selector_Error_Code>.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub struct SelectorErrorCode(usize);
impl UserContext {
/// Returns a reference to the general registers.
pub fn general_regs(&self) -> &GeneralRegs {
&self.user_context.general
}
/// Returns a mutable reference to the general registers
pub fn general_regs_mut(&mut self) -> &mut GeneralRegs {
&mut self.user_context.general
}
/// Takes the CPU exception out.
pub fn take_exception(&mut self) -> Option<CpuException> {
self.exception.take()
}
/// Sets the thread-local storage pointer.
pub fn set_tls_pointer(&mut self, tls: usize) {
self.set_fsbase(tls)
}
/// Gets the thread-local storage pointer.
pub fn tls_pointer(&self) -> usize {
self.fsbase()
}
/// Activates the thread-local storage pointer for the current task.
///
/// The method by itself is safe because the value of the TLS register won't affect kernel code.
/// But if the user program relies on the TLS pointer, make sure that the pointer is correctly
/// set when entering the user space.
pub fn activate_tls_pointer(&self) {
// In x86, context switching preserves `fsbase`, but `fsbase` won't be loaded at
// `UserContext::execute`, so it must be activated in advance.
//
// SAFETY: Setting `fsbase` won't affect kernel code.
unsafe { wrfsbase(self.fsbase() as u64) }
}
}
impl UserContextApiInternal for UserContext {
fn execute<F>(&mut self, mut has_kernel_event: F) -> ReturnReason
where
F: FnMut() -> bool,
{
// set interrupt flag so that in user mode it can receive external interrupts
// set ID flag which means cpu support CPUID instruction
self.user_context.general.rflags |= (RFlags::INTERRUPT_FLAG | RFlags::ID).bits() as usize;
const SYSCALL_TRAPNUM: usize = 0x100;
// Return when it is syscall or cpu exception type is Fault or Trap.
loop {
scheduler::might_preempt();
self.user_context.run();
let exception =
CpuException::new(self.user_context.trap_num, self.user_context.error_code);
match exception {
#[cfg(feature = "cvm_guest")]
Some(CpuException::VirtualizationException) => {
let ve_handler = VirtualizationExceptionHandler::new();
// Check out the doc of `VirtualizationExceptionHandler::new` to
// see why IRQs must enabled _after_ instantiating a `VirtualizationExceptionHandler`.
crate::arch::irq::enable_local();
ve_handler.handle(self);
}
Some(exception) if exception.type_().is_fault_or_trap() => {
crate::arch::irq::enable_local();
self.exception = Some(exception);
return ReturnReason::UserException;
}
Some(exception) => {
panic!(
"cannot handle user CPU exception: {:?}, trapframe: {:?}",
exception,
self.as_trap_frame()
);
}
None if self.user_context.trap_num == SYSCALL_TRAPNUM => {
crate::arch::irq::enable_local();
return ReturnReason::UserSyscall;
}
None => {
call_irq_callback_functions(
&self.as_trap_frame(),
self.as_trap_frame().trap_num,
);
crate::arch::irq::enable_local();
}
}
if has_kernel_event() {
break ReturnReason::KernelEvent;
}
}
}
fn as_trap_frame(&self) -> TrapFrame {
TrapFrame {
rax: self.user_context.general.rax,
rbx: self.user_context.general.rbx,
rcx: self.user_context.general.rcx,
rdx: self.user_context.general.rdx,
rsi: self.user_context.general.rsi,
rdi: self.user_context.general.rdi,
rbp: self.user_context.general.rbp,
rsp: self.user_context.general.rsp,
r8: self.user_context.general.r8,
r9: self.user_context.general.r9,
r10: self.user_context.general.r10,
r11: self.user_context.general.r11,
r12: self.user_context.general.r12,
r13: self.user_context.general.r13,
r14: self.user_context.general.r14,
r15: self.user_context.general.r15,
_pad: 0,
trap_num: self.user_context.trap_num,
error_code: self.user_context.error_code,
rip: self.user_context.general.rip,
cs: 0,
rflags: self.user_context.general.rflags,
}
}
}
/// As Osdev Wiki defines(<https://wiki.osdev.org/Exceptions>):
/// CPU exceptions are classified as:
///
/// Faults: These can be corrected and the program may continue as if nothing happened.
///
/// Traps: Traps are reported immediately after the execution of the trapping instruction.
///
/// Aborts: Some severe unrecoverable error.
///
/// But there exists some vector which are special. Vector 1 can be both fault or trap and vector 2 is interrupt.
/// So here we also define FaultOrTrap and Interrupt
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum CpuExceptionType {
/// CPU faults. Faults can be corrected, and the program may continue as if nothing happened.
Fault,
/// CPU traps. Traps are reported immediately after the execution of the trapping instruction
Trap,
/// Faults or traps
FaultOrTrap,
/// CPU interrupts
Interrupt,
/// Some severe unrecoverable error
Abort,
/// Reserved for future use
Reserved,
}
impl CpuExceptionType {
/// Returns whether this exception type is a fault or a trap.
pub fn is_fault_or_trap(self) -> bool {
match self {
CpuExceptionType::Trap | CpuExceptionType::Fault | CpuExceptionType::FaultOrTrap => {
true
}
CpuExceptionType::Abort | CpuExceptionType::Interrupt | CpuExceptionType::Reserved => {
false
}
}
}
}
/// Architecture-specific data reported with a page-fault exception.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct RawPageFaultInfo {
/// The error code pushed by the CPU for this page fault.
pub error_code: PageFaultErrorCode,
/// The linear (virtual) address that triggered the fault (contents of CR2).
pub addr: Vaddr,
}
bitflags! {
/// Page Fault error code. Following the Intel Architectures Software Developer's Manual Volume 3
pub struct PageFaultErrorCode : usize{
/// 0 if no translation for the linear address.
const PRESENT = 1 << 0;
/// 1 if the access was a write.
const WRITE = 1 << 1;
/// 1 if the access was a user-mode access.
const USER = 1 << 2;
/// 1 if there is no translation for the linear address
/// because a reserved bit was set.
const RESERVED = 1 << 3;
/// 1 if the access was an instruction fetch.
const INSTRUCTION = 1 << 4;
/// 1 if the access was a data access to a linear address with a protection key for which
/// the protection-key rights registers disallow access.
const PROTECTION = 1 << 5;
/// 1 if the access was a shadow-stack access.
const SHADOW_STACK = 1 << 6;
/// 1 if there is no translation for the linear address using HLAT paging.
const HLAT = 1 << 7;
/// 1 if the exception is unrelated to paging and resulted from violation of SGX-specific
/// access-control requirements.
const SGX = 1 << 15;
}
}
impl UserContextApi for UserContext {
fn trap_number(&self) -> usize {
self.user_context.trap_num
}
fn trap_error_code(&self) -> usize {
self.user_context.error_code
}
fn set_instruction_pointer(&mut self, ip: usize) {
self.set_rip(ip);
}
fn set_stack_pointer(&mut self, sp: usize) {
self.set_rsp(sp)
}
fn stack_pointer(&self) -> usize {
self.rsp()
}
fn instruction_pointer(&self) -> usize {
self.rip()
}
}
macro_rules! cpu_context_impl_getter_setter {
( $( [ $field: ident, $setter_name: ident] ),*) => {
impl UserContext {
$(
#[doc = concat!("Gets the value of ", stringify!($field))]
#[inline(always)]
pub fn $field(&self) -> usize {
self.user_context.general.$field
}
#[doc = concat!("Sets the value of ", stringify!(field))]
#[inline(always)]
pub fn $setter_name(&mut self, $field: usize) {
self.user_context.general.$field = $field;
}
)*
}
};
}
cpu_context_impl_getter_setter!(
[rax, set_rax],
[rbx, set_rbx],
[rcx, set_rcx],
[rdx, set_rdx],
[rsi, set_rsi],
[rdi, set_rdi],
[rbp, set_rbp],
[rsp, set_rsp],
[r8, set_r8],
[r9, set_r9],
[r10, set_r10],
[r11, set_r11],
[r12, set_r12],
[r13, set_r13],
[r14, set_r14],
[r15, set_r15],
[rip, set_rip],
[rflags, set_rflags],
[fsbase, set_fsbase],
[gsbase, set_gsbase]
);
/// The FPU context of user task.
///
/// This could be used for saving both legacy and modern state format.
#[derive(Debug)]
pub struct FpuContext {
xsave_area: Box<XSaveArea>,
area_size: usize,
}
impl FpuContext {
/// Creates a new FPU context.
pub fn new() -> Self {
let mut area_size = size_of::<FxSaveArea>();
if let Some(xsave_area_size) = XSAVE_AREA_SIZE.get() {
area_size = area_size.max(*xsave_area_size);
}
Self {
xsave_area: Box::new(XSaveArea::new()),
area_size,
}
}
/// Saves CPU's current FPU context to this instance.
pub fn save(&mut self) {
let mem_addr = self.as_bytes_mut().as_mut_ptr();
if XSTATE_MAX_FEATURES.is_completed() {
unsafe { _xsave64(mem_addr, XFEATURE_MASK_USER_RESTORE) };
} else {
unsafe { _fxsave64(mem_addr) };
}
debug!("Save FPU context");
}
/// Loads CPU's FPU context from this instance.
pub fn load(&mut self) {
let mem_addr = self.as_bytes().as_ptr();
if let Some(xstate_max_features) = XSTATE_MAX_FEATURES.get() {
let rs_mask = XFEATURE_MASK_USER_RESTORE & *xstate_max_features;
unsafe { _xrstor64(mem_addr, rs_mask) };
} else {
unsafe { _fxrstor64(mem_addr) };
}
debug!("Load FPU context");
}
/// Returns the FPU context as a byte slice.
pub fn as_bytes(&self) -> &[u8] {
&self.xsave_area.as_bytes()[..self.area_size]
}
/// Returns the FPU context as a mutable byte slice.
pub fn as_bytes_mut(&mut self) -> &mut [u8] {
&mut self.xsave_area.as_bytes_mut()[..self.area_size]
}
}
impl Default for FpuContext {
fn default() -> Self {
Self::new()
}
}
impl Clone for FpuContext {
fn clone(&self) -> Self {
let mut xsave_area = Box::new(XSaveArea::new());
xsave_area.fxsave_area = self.xsave_area.fxsave_area;
xsave_area.features = self.xsave_area.features;
xsave_area.compaction = self.xsave_area.compaction;
if self.area_size > size_of::<FxSaveArea>() {
let len = self.area_size - size_of::<FxSaveArea>() - 64;
xsave_area.extended_state_area[..len]
.copy_from_slice(&self.xsave_area.extended_state_area[..len]);
}
Self {
xsave_area,
area_size: self.area_size,
}
}
}
/// The modern FPU context format (as saved and restored by the `XSAVE` and `XRSTOR` instructions).
#[repr(C)]
#[repr(align(64))]
#[derive(Clone, Copy, Debug, Pod)]
struct XSaveArea {
fxsave_area: FxSaveArea,
features: u64,
compaction: u64,
reserved: [u64; 6],
extended_state_area: [u8; MAX_XSAVE_AREA_SIZE - size_of::<FxSaveArea>() - 64],
}
impl XSaveArea {
fn new() -> Self {
let features = if let Some(xstate_max_features) = XSTATE_MAX_FEATURES.get() {
XCr0::read().bits() & *xstate_max_features
} else {
0
};
let mut xsave_area = Self::new_zeroed();
// Set the initial values for the FPU context. Refer to Intel SDM, Table 11-1:
// "IA-32 and Intel® 64 Processor States Following Power-up, Reset, or INIT (Contd.)".
xsave_area.fxsave_area.control = 0x037F;
xsave_area.fxsave_area.tag = 0xFFFF;
xsave_area.fxsave_area.mxcsr = 0x1F80;
xsave_area.features = features;
xsave_area
}
}
/// The legacy SSE/MMX FPU context format (as saved and restored by the `FXSAVE` and `FXRSTOR` instructions).
#[repr(C)]
#[repr(align(16))]
#[derive(Clone, Copy, Debug, Pod)]
struct FxSaveArea {
control: u16, // x87 FPU Control Word
status: u16, // x87 FPU Status Word
tag: u16, // x87 FPU Tag Word
op: u16, // x87 FPU Last Instruction Opcode
ip: u32, // x87 FPU Instruction Pointer Offset
cs: u32, // x87 FPU Instruction Pointer Selector
dp: u32, // x87 FPU Instruction Operand (Data) Pointer Offset
ds: u32, // x87 FPU Instruction Operand (Data) Pointer Selector
mxcsr: u32, // MXCSR Register State
mxcsr_mask: u32, // MXCSR Mask
st_space: [u32; 32], // x87 FPU or MMX technology registers (ST0-ST7 or MM0-MM7, 128 bits per field)
xmm_space: [u32; 64], // XMM registers (XMM0-XMM15, 128 bits per field)
padding: [u32; 12], // Padding
reserved: [u32; 12], // Software reserved
}
/// The XSTATE features (user & supervisor) supported by the processor.
static XSTATE_MAX_FEATURES: Once<u64> = Once::new();
/// Mask features which are restored when returning to user space.
///
/// X87 | SSE | AVX | OPMASK | ZMM_HI256 | HI16_ZMM
const XFEATURE_MASK_USER_RESTORE: u64 = 0b1110_0111;
/// The real size in bytes of the XSAVE area containing all states enabled by XCRO | IA32_XSS.
static XSAVE_AREA_SIZE: Once<usize> = Once::new();
/// The max size in bytes of the XSAVE area.
const MAX_XSAVE_AREA_SIZE: usize = 4096;
pub(in crate::arch) fn enable_essential_features() {
use super::extension::{has_extensions, IsaExtensions};
if has_extensions(IsaExtensions::XSAVE) {
XSTATE_MAX_FEATURES.call_once(|| super::cpuid::query_xstate_max_features().unwrap());
XSAVE_AREA_SIZE.call_once(|| {
let xsave_area_size = super::cpuid::query_xsave_area_size().unwrap() as usize;
assert!(xsave_area_size <= MAX_XSAVE_AREA_SIZE);
xsave_area_size
});
}
// We now assume that all x86-64 CPUs should have the FPU. Otherwise, we should check
// `has_extensions(IsaExtensions::FPU)` here.
{
let mut cr0 = Cr0::read();
cr0.remove(Cr0Flags::TASK_SWITCHED | Cr0Flags::EMULATE_COPROCESSOR);
unsafe {
Cr0::write(cr0);
// Flush out any pending x87 state.
core::arch::asm!("fninit");
}
}
}