1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
// SPDX-License-Identifier: MPL-2.0
//! CPU.
use alloc::vec::Vec;
use core::{
arch::x86_64::{_fxrstor, _fxsave},
fmt::Debug,
};
use bitflags::bitflags;
use bitvec::{
prelude::{BitVec, Lsb0},
slice::IterOnes,
};
use log::debug;
#[cfg(feature = "intel_tdx")]
use tdx_guest::tdcall;
use trapframe::{GeneralRegs, UserContext as RawUserContext};
use x86_64::registers::{
rflags::RFlags,
segmentation::{Segment64, FS},
};
#[cfg(feature = "intel_tdx")]
use crate::arch::tdx_guest::{handle_virtual_exception, TdxTrapFrame};
use crate::{
trap::call_irq_callback_functions,
user::{ReturnReason, UserContextApi, UserContextApiInternal},
};
/// Returns the number of CPUs.
pub fn num_cpus() -> u32 {
// FIXME: we only start one cpu now.
1
}
/// Returns the ID of this CPU.
pub fn this_cpu() -> u32 {
// FIXME: we only start one cpu now.
0
}
/// A set of CPUs.
#[derive(Default)]
pub struct CpuSet {
bitset: BitVec,
}
impl CpuSet {
/// Creates a new `CpuSet` with all CPUs included.
pub fn new_full() -> Self {
let num_cpus = num_cpus();
let mut bitset = BitVec::with_capacity(num_cpus as usize);
bitset.resize(num_cpus as usize, true);
Self { bitset }
}
/// Creates a new `CpuSet` with no CPUs included.
pub fn new_empty() -> Self {
let num_cpus = num_cpus();
let mut bitset = BitVec::with_capacity(num_cpus as usize);
bitset.resize(num_cpus as usize, false);
Self { bitset }
}
/// Adds a CPU with identifier `cpu_id` to the `CpuSet`.
pub fn add(&mut self, cpu_id: u32) {
self.bitset.set(cpu_id as usize, true);
}
/// Adds multiple CPUs from `cpu_ids` to the `CpuSet`.
pub fn add_from_vec(&mut self, cpu_ids: Vec<u32>) {
for cpu_id in cpu_ids {
self.add(cpu_id)
}
}
/// Adds all available CPUs to the `CpuSet`.
pub fn add_all(&mut self) {
self.bitset.fill(true);
}
/// Removes a CPU with identifier `cpu_id` from the `CpuSet`.
pub fn remove(&mut self, cpu_id: u32) {
self.bitset.set(cpu_id as usize, false);
}
/// Removes multiple CPUs from `cpu_ids` from the `CpuSet`.
pub fn remove_from_vec(&mut self, cpu_ids: Vec<u32>) {
for cpu_id in cpu_ids {
self.remove(cpu_id);
}
}
/// Clears the `CpuSet`, removing all CPUs.
pub fn clear(&mut self) {
self.bitset.fill(false);
}
/// Checks if the `CpuSet` contains a specific CPU.
pub fn contains(&self, cpu_id: u32) -> bool {
self.bitset.get(cpu_id as usize).as_deref() == Some(&true)
}
/// Returns an iterator over the set CPUs.
pub fn iter(&self) -> IterOnes<'_, usize, Lsb0> {
self.bitset.iter_ones()
}
}
/// Cpu context, including both general-purpose registers and floating-point registers.
#[derive(Clone, Default, Copy, Debug)]
#[repr(C)]
pub struct UserContext {
user_context: RawUserContext,
fp_regs: FpRegs,
cpu_exception_info: CpuExceptionInfo,
}
/// CPU exception information.
#[derive(Clone, Default, Copy, Debug)]
#[repr(C)]
pub struct CpuExceptionInfo {
/// The ID of the exception.
pub id: usize,
/// The error code associated with the exception.
pub error_code: usize,
/// The virtual address where a page fault occurred.
pub page_fault_addr: usize,
}
#[cfg(feature = "intel_tdx")]
impl TdxTrapFrame for GeneralRegs {
fn rax(&self) -> usize {
self.rax
}
fn set_rax(&mut self, rax: usize) {
self.rax = rax;
}
fn rbx(&self) -> usize {
self.rbx
}
fn set_rbx(&mut self, rbx: usize) {
self.rbx = rbx;
}
fn rcx(&self) -> usize {
self.rcx
}
fn set_rcx(&mut self, rcx: usize) {
self.rcx = rcx;
}
fn rdx(&self) -> usize {
self.rdx
}
fn set_rdx(&mut self, rdx: usize) {
self.rdx = rdx;
}
fn rsi(&self) -> usize {
self.rsi
}
fn set_rsi(&mut self, rsi: usize) {
self.rsi = rsi;
}
fn rdi(&self) -> usize {
self.rdi
}
fn set_rdi(&mut self, rdi: usize) {
self.rdi = rdi;
}
fn rip(&self) -> usize {
self.rip
}
fn set_rip(&mut self, rip: usize) {
self.rip = rip;
}
fn r8(&self) -> usize {
self.r8
}
fn set_r8(&mut self, r8: usize) {
self.r8 = r8;
}
fn r9(&self) -> usize {
self.r9
}
fn set_r9(&mut self, r9: usize) {
self.r9 = r9;
}
fn r10(&self) -> usize {
self.r10
}
fn set_r10(&mut self, r10: usize) {
self.r10 = r10;
}
fn r11(&self) -> usize {
self.r11
}
fn set_r11(&mut self, r11: usize) {
self.r11 = r11;
}
fn r12(&self) -> usize {
self.r12
}
fn set_r12(&mut self, r12: usize) {
self.r12 = r12;
}
fn r13(&self) -> usize {
self.r13
}
fn set_r13(&mut self, r13: usize) {
self.r13 = r13;
}
fn r14(&self) -> usize {
self.r14
}
fn set_r14(&mut self, r14: usize) {
self.r14 = r14;
}
fn r15(&self) -> usize {
self.r15
}
fn set_r15(&mut self, r15: usize) {
self.r15 = r15;
}
fn rbp(&self) -> usize {
self.rbp
}
fn set_rbp(&mut self, rbp: usize) {
self.rbp = rbp;
}
}
/// User Preemption.
pub struct UserPreemption {
count: u32,
}
impl UserPreemption {
const PREEMPTION_INTERVAL: u32 = 100;
/// Creates a new instance of `UserPreemption`.
#[allow(clippy::new_without_default)]
pub const fn new() -> Self {
UserPreemption { count: 0 }
}
/// Checks if preemption might occur and takes necessary actions.
pub fn might_preempt(&mut self) {
self.count = (self.count + 1) % Self::PREEMPTION_INTERVAL;
if self.count == 0 {
crate::arch::irq::enable_local();
crate::task::schedule();
crate::arch::irq::disable_local();
}
}
}
impl UserContext {
/// Returns a reference to the general registers.
pub fn general_regs(&self) -> &GeneralRegs {
&self.user_context.general
}
/// Returns a mutable reference to the general registers
pub fn general_regs_mut(&mut self) -> &mut GeneralRegs {
&mut self.user_context.general
}
/// Returns the trap information.
pub fn trap_information(&self) -> &CpuExceptionInfo {
&self.cpu_exception_info
}
/// Returns a reference to the floating point registers
pub fn fp_regs(&self) -> &FpRegs {
&self.fp_regs
}
/// Returns a mutable reference to the floating point registers
pub fn fp_regs_mut(&mut self) -> &mut FpRegs {
&mut self.fp_regs
}
}
impl UserContextApiInternal for UserContext {
fn execute<F>(&mut self, mut has_kernel_event: F) -> ReturnReason
where
F: FnMut() -> bool,
{
// set interrupt flag so that in user mode it can receive external interrupts
// set ID flag which means cpu support CPUID instruction
self.user_context.general.rflags |= (RFlags::INTERRUPT_FLAG | RFlags::ID).bits() as usize;
let return_reason: ReturnReason;
const SYSCALL_TRAPNUM: u16 = 0x100;
let mut user_preemption = UserPreemption::new();
// return when it is syscall or cpu exception type is Fault or Trap.
loop {
self.user_context.run();
match CpuException::to_cpu_exception(self.user_context.trap_num as u16) {
Some(exception) => {
#[cfg(feature = "intel_tdx")]
if *exception == VIRTUALIZATION_EXCEPTION {
let ve_info =
tdcall::get_veinfo().expect("#VE handler: fail to get VE info\n");
handle_virtual_exception(self.general_regs_mut(), &ve_info);
continue;
}
if exception.typ == CpuExceptionType::FaultOrTrap
|| exception.typ == CpuExceptionType::Fault
|| exception.typ == CpuExceptionType::Trap
{
return_reason = ReturnReason::UserException;
break;
}
}
None => {
if self.user_context.trap_num as u16 == SYSCALL_TRAPNUM {
return_reason = ReturnReason::UserSyscall;
break;
}
}
};
call_irq_callback_functions(&self.as_trap_frame());
if has_kernel_event() {
return_reason = ReturnReason::KernelEvent;
break;
}
user_preemption.might_preempt();
}
crate::arch::irq::enable_local();
if return_reason == ReturnReason::UserException {
self.cpu_exception_info = CpuExceptionInfo {
page_fault_addr: unsafe { x86::controlregs::cr2() },
id: self.user_context.trap_num,
error_code: self.user_context.error_code,
};
}
return_reason
}
fn as_trap_frame(&self) -> trapframe::TrapFrame {
trapframe::TrapFrame {
rax: self.user_context.general.rax,
rbx: self.user_context.general.rbx,
rcx: self.user_context.general.rcx,
rdx: self.user_context.general.rdx,
rsi: self.user_context.general.rsi,
rdi: self.user_context.general.rdi,
rbp: self.user_context.general.rbp,
rsp: self.user_context.general.rsp,
r8: self.user_context.general.r8,
r9: self.user_context.general.r9,
r10: self.user_context.general.r10,
r11: self.user_context.general.r11,
r12: self.user_context.general.r12,
r13: self.user_context.general.r13,
r14: self.user_context.general.r14,
r15: self.user_context.general.r15,
_pad: 0,
trap_num: self.user_context.trap_num,
error_code: self.user_context.error_code,
rip: self.user_context.general.rip,
cs: 0,
rflags: self.user_context.general.rflags,
}
}
}
/// As Osdev Wiki defines(<https://wiki.osdev.org/Exceptions>):
/// CPU exceptions are classified as:
///
/// Faults: These can be corrected and the program may continue as if nothing happened.
///
/// Traps: Traps are reported immediately after the execution of the trapping instruction.
///
/// Aborts: Some severe unrecoverable error.
///
/// But there exists some vector which are special. Vector 1 can be both fault or trap and vector 2 is interrupt.
/// So here we also define FaultOrTrap and Interrupt
#[derive(PartialEq, Eq, Debug)]
pub enum CpuExceptionType {
/// CPU faults. Faults can be corrected, and the program may continue as if nothing happened.
Fault,
/// CPU traps. Traps are reported immediately after the execution of the trapping instruction
Trap,
/// Faults or traps
FaultOrTrap,
/// CPU interrupts
Interrupt,
/// Some severe unrecoverable error
Abort,
/// Reserved for future use
Reserved,
}
/// CPU exception.
#[derive(Debug, Eq, PartialEq)]
pub struct CpuException {
/// The ID of the CPU exception.
pub number: u16,
/// The type of the CPU exception.
pub typ: CpuExceptionType,
}
/// Copy from: https://veykril.github.io/tlborm/decl-macros/building-blocks/counting.html#slice-length
macro_rules! replace_expr {
($_t:tt $sub:expr) => {
$sub
};
}
/// Copy from: https://veykril.github.io/tlborm/decl-macros/building-blocks/counting.html#slice-length
macro_rules! count_tts {
($($tts:tt)*) => {<[()]>::len(&[$(replace_expr!($tts ())),*])};
}
macro_rules! define_cpu_exception {
( $([ $name: ident = $exception_num:tt, $exception_type:tt]),* ) => {
const EXCEPTION_LIST : [CpuException;count_tts!($($name)*)] = [
$($name,)*
];
$(
#[doc = concat!("The ", stringify!($name), " exception")]
pub const $name : CpuException = CpuException{
number: $exception_num,
typ: CpuExceptionType::$exception_type,
};
)*
}
}
// We also defined the RESERVED Exception so that we can easily use the index of EXCEPTION_LIST to get the Exception
define_cpu_exception!(
[DIVIDE_BY_ZERO = 0, Fault],
[DEBUG = 1, FaultOrTrap],
[NON_MASKABLE_INTERRUPT = 2, Interrupt],
[BREAKPOINT = 3, Trap],
[OVERFLOW = 4, Trap],
[BOUND_RANGE_EXCEEDED = 5, Fault],
[INVALID_OPCODE = 6, Fault],
[DEVICE_NOT_AVAILABLE = 7, Fault],
[DOUBLE_FAULT = 8, Abort],
[COPROCESSOR_SEGMENT_OVERRUN = 9, Fault],
[INVAILD_TSS = 10, Fault],
[SEGMENT_NOT_PRESENT = 11, Fault],
[STACK_SEGMENT_FAULT = 12, Fault],
[GENERAL_PROTECTION_FAULT = 13, Fault],
[PAGE_FAULT = 14, Fault],
[RESERVED_15 = 15, Reserved],
[X87_FLOATING_POINT_EXCEPTION = 16, Fault],
[ALIGNMENT_CHECK = 17, Fault],
[MACHINE_CHECK = 18, Abort],
[SIMD_FLOATING_POINT_EXCEPTION = 19, Fault],
[VIRTUALIZATION_EXCEPTION = 20, Fault],
[CONTROL_PROTECTION_EXCEPTION = 21, Fault],
[RESERVED_22 = 22, Reserved],
[RESERVED_23 = 23, Reserved],
[RESERVED_24 = 24, Reserved],
[RESERVED_25 = 25, Reserved],
[RESERVED_26 = 26, Reserved],
[RESERVED_27 = 27, Reserved],
[HYPERVISOR_INJECTION_EXCEPTION = 28, Fault],
[VMM_COMMUNICATION_EXCEPTION = 29, Fault],
[SECURITY_EXCEPTION = 30, Fault],
[RESERVED_31 = 31, Reserved]
);
bitflags! {
/// Page Fault error code. Following the Intel Architectures Software Developer's Manual Volume 3
pub struct PageFaultErrorCode : usize{
/// 0 if no translation for the linear address.
const PRESENT = 1 << 0;
/// 1 if the access was a write.
const WRITE = 1 << 1;
/// 1 if the access was a user-mode access.
const USER = 1 << 2;
/// 1 if there is no translation for the linear address
/// because a reserved bit was set.
const RESERVED = 1 << 3;
/// 1 if the access was an instruction fetch.
const INSTRUCTION = 1 << 4;
/// 1 if the access was a data access to a linear address with a protection key for which
/// the protection-key rights registers disallow access.
const PROTECTION = 1 << 5;
/// 1 if the access was a shadow-stack access.
const SHADOW_STACK = 1 << 6;
/// 1 if there is no translation for the linear address using HLAT paging.
const HLAT = 1 << 7;
/// 1 if the exception is unrelated to paging and resulted from violation of SGX-specific
/// access-control requirements.
const SGX = 1 << 15;
}
}
impl CpuException {
/// Checks if the given `trap_num` is a valid CPU exception.
pub fn is_cpu_exception(trap_num: u16) -> bool {
trap_num < EXCEPTION_LIST.len() as u16
}
/// Maps a `trap_num` to its corresponding CPU exception.
pub fn to_cpu_exception(trap_num: u16) -> Option<&'static CpuException> {
EXCEPTION_LIST.get(trap_num as usize)
}
}
impl UserContextApi for UserContext {
fn trap_number(&self) -> usize {
self.user_context.trap_num
}
fn trap_error_code(&self) -> usize {
self.user_context.error_code
}
fn set_instruction_pointer(&mut self, ip: usize) {
self.set_rip(ip);
}
fn set_stack_pointer(&mut self, sp: usize) {
self.set_rsp(sp)
}
fn stack_pointer(&self) -> usize {
self.rsp()
}
fn instruction_pointer(&self) -> usize {
self.rip()
}
}
macro_rules! cpu_context_impl_getter_setter {
( $( [ $field: ident, $setter_name: ident] ),*) => {
impl UserContext {
$(
#[doc = concat!("Gets the value of ", stringify!($field))]
#[inline(always)]
pub fn $field(&self) -> usize {
self.user_context.general.$field
}
#[doc = concat!("Sets the value of ", stringify!(field))]
#[inline(always)]
pub fn $setter_name(&mut self, $field: usize) {
self.user_context.general.$field = $field;
}
)*
}
};
}
cpu_context_impl_getter_setter!(
[rax, set_rax],
[rbx, set_rbx],
[rcx, set_rcx],
[rdx, set_rdx],
[rsi, set_rsi],
[rdi, set_rdi],
[rbp, set_rbp],
[rsp, set_rsp],
[r8, set_r8],
[r9, set_r9],
[r10, set_r10],
[r11, set_r11],
[r12, set_r12],
[r13, set_r13],
[r14, set_r14],
[r15, set_r15],
[rip, set_rip],
[rflags, set_rflags],
[fsbase, set_fsbase],
[gsbase, set_gsbase]
);
/// The floating-point state of CPU.
#[derive(Clone, Copy, Debug)]
#[repr(C)]
pub struct FpRegs {
buf: FxsaveArea,
is_valid: bool,
}
impl FpRegs {
/// Creates a new instance.
///
/// Note that a newly-created instance's floating point state is not
/// initialized, thus considered invalid (i.e., `self.is_valid() == false`).
pub fn new() -> Self {
// The buffer address requires 16bytes alignment.
Self {
buf: FxsaveArea { data: [0; 512] },
is_valid: false,
}
}
/// Save CPU's current floating pointer states into this instance.
pub fn save(&mut self) {
debug!("save fpregs");
debug!("write addr = 0x{:x}", (&mut self.buf) as *mut _ as usize);
let layout = alloc::alloc::Layout::for_value(&self.buf);
debug!("layout: {:?}", layout);
let ptr = unsafe { alloc::alloc::alloc(layout) } as usize;
debug!("ptr = 0x{:x}", ptr);
unsafe {
_fxsave(self.buf.data.as_mut_ptr());
}
debug!("save fpregs success");
self.is_valid = true;
}
/// Saves the floating state given by a slice of u8.
///
/// After calling this method, the state of the instance will be considered valid.
///
/// # Safety
///
/// It is the caller's responsibility to ensure that the source slice contains
/// data that is in xsave/xrstor format. The slice must have a length of 512 bytes.
pub unsafe fn save_from_slice(&mut self, src: &[u8]) {
self.buf.data.copy_from_slice(src);
self.is_valid = true;
}
/// Returns whether the instance can contains data in valid xsave/xrstor format.
pub fn is_valid(&self) -> bool {
self.is_valid
}
/// Clears the state of the instance.
///
/// This method does not reset the underlying buffer that contains the floating
/// point state; it only marks the buffer __invalid__.
pub fn clear(&mut self) {
self.is_valid = false;
}
/// Restores CPU's CPU floating pointer states from this instance.
///
/// # Panics
///
/// If the current state is invalid, the method will panic.
pub fn restore(&self) {
debug!("restore fpregs");
assert!(self.is_valid);
unsafe { _fxrstor(self.buf.data.as_ptr()) };
debug!("restore fpregs success");
}
/// Returns the floating point state as a slice.
///
/// Note that the slice may contain garbage if `self.is_valid() == false`.
pub fn as_slice(&self) -> &[u8] {
&self.buf.data
}
}
impl Default for FpRegs {
fn default() -> Self {
Self::new()
}
}
#[repr(C, align(16))]
#[derive(Debug, Clone, Copy)]
struct FxsaveArea {
data: [u8; 512], // 512 bytes
}
/// Sets the base address for the CPU local storage by writing to the FS base model-specific register.
/// This operation is marked as `unsafe` because it directly interfaces with low-level CPU registers.
///
/// # Safety
///
/// - This function is safe to call provided that the FS register is dedicated entirely for CPU local storage
/// and is not concurrently accessed for other purposes.
/// - The caller must ensure that `addr` is a valid address and properly aligned, as required by the CPU.
/// - This function should only be called in contexts where the CPU is in a state to accept such changes,
/// such as during processor initialization.
pub(crate) unsafe fn set_cpu_local_base(addr: u64) {
FS::write_base(x86_64::addr::VirtAddr::new(addr));
}
/// Gets the base address for the CPU local storage by reading the FS base model-specific register.
pub(crate) fn get_cpu_local_base() -> u64 {
FS::read_base().as_u64()
}