multiboot2_common/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
//! Common helpers for the `multiboot2` and `multiboot2-header` crates.
//!
//! # Value-add
//!
//! The main value-add of this crate is to abstract away the parsing and
//! construction of Multiboot2 structures. This is more complex as it may sound
//! at first due to the difficulties listed below. Further, functionality for
//! the iteration of tags are provided.
//!
//! The abstractions provided by this crate serve as the base to work with the
//! following structures in interaction:
//! - multiboot2:
//! - boot information
//! - boot information header (the fixed sized begin portion of a boot
//! information)
//! - boot information tags
//! - boot information tag header (the fixed sized begin portion of a tag)
//! - multiboot2-header:
//! - header
//! - header header (the fixed sized begin portion of a header)
//! - header tags
//! - header tag header (the fixed sized begin portion of a tag)
//!
//! # TL;DR: Specific Example
//!
//! To name a specific example, the `multiboot2` crate just needs the following
//! types:
//!
//! - `BootInformationHeader` implementing [`Header`]
//! - `BootInformation` wrapping [`DynSizedStructure`]
//! - `type TagIter<'a> = multiboot2_common::TagIter<'a, TagHeader>`
//! ([`TagIter`])
//! - `TagHeader` implementing [`Header`]
//! - Structs for each tag, each implementing [`MaybeDynSized`]
//!
//! Then, all the magic using the [`TagIter`] and [`DynSizedStructure::cast`]
//! can easily be utilized.
//!
//! The same correspondingly applies to the structures in `multiboot2-header`.
//!
//! # Design, Solved Problem, and Difficulties along the Way
//!
//! Firstly, the design choice to have ABI-compatible rusty types in
//! `multiboot2` and `multiboot2-header` mainly influenced the requirements and
//! difficulties along the way. These obstacles on the other side, influenced
//! the design. The outcome is what we perceive as the optimal rusty and
//! convenient solution.
//!
//! ## Architecture Diagrams
//!
//! The figures in the [README](https://crates.io/crates/multiboot2-common)
//! (currently not embeddable in lib.rs unfortunately) provides an overview of
//! the parsing of Multiboot2 structures and how the definitions from this
//! crate are used.
//!
//! Note that although the diagrams seem complex, most logic is in
//! `multiboot2-common`. For downstream users, the usage is quite simple.
//!
//! ## Multiboot2 Structures
//!
//! Multiboot2 structures are a consecutive chunk of bytes in memory. They use
//! the "header pattern", which means a fixed size and known [`Header`] type
//! indicates the total size of the structure. This is roughly translated to the
//! following rusty base type:
//!
//! ```ignore
//! #[repr(C, align(8))]
//! struct DynStructure {
//! header: MyHeader,
//! payload: [u8]
//! }
//! ```
//!
//! Note that these structures can also be nested. So for example, the
//! Multiboot2 boot information contains Multiboot2 tags, and the Multiboot2
//! header contains Multiboot2 header tags - both are itself **dynamically
//! sized** structures. This means, you can know the size (and amount of
//! elements) **only at runtime!**
//!
//! A final `[u8]` field in the structs is the most rusty way to model this.
//! However, this makes the type a Dynamically Sized Type (DST). To create
//! references to these types from a byte slice, one needs fat pointers. They
//! are a language feature currently not constructable with stable Rust.
//! Luckily, we can utilize [`ptr_meta`].
//!
//! Figure 1 in the [README](https://crates.io/crates/multiboot2-common)
//! (currently not embeddable in lib.rs unfortunately) provides an overview of
//! Multiboot2 structures.
//!
//! ## Dynamic and Sized Structs in Rust
//!
//! Note that we also have structures (tags) in Multiboot2 that looks like this:
//!
//! ```ignore
//! #[repr(C, align(8))]
//! struct DynStructure {
//! header: MyHeader,
//! // Not just [`u8`]
//! payload: [SomeType]
//! }
//! ```
//!
//! or
//!
//! ```ignore
//! #[repr(C, align(8))]
//! struct CommandLineTag {
//! header: TagHeader,
//! start: u32,
//! end: u32,
//! // More than just the base header before the dynamic portion
//! data: [u8]
//! }
//! ```
//!
//! ## Chosen Design
//!
//! The overall common abstractions needed to solve the problems mentioned in
//! this section are also mainly influenced by the fact that the `multiboot2`
//! and `multiboot2-header` crates use a **zero-copy** design by parsing
//! the corresponding raw bytes with **ABI-compatible types** owning all their
//! memory.
//!
//! Further, by having ABI-compatible types that fully represent the reality, we
//! can use the same type for parsing **and** for construction, as modelled in
//! the following simplified example:
//!
//! ```rust,ignore
//! /// ABI-compatible tag for parsing.
//! #[repr(C)]
//! pub struct MemoryMapTag {
//! header: TagHeader,
//! entry_size: u32,
//! entry_version: u32,
//! areas: [MemoryArea],
//! }
//!
//! impl MemoryMapTag {
//! // We can also create an ABI-compatible structure of that type.
//! pub fn new(areas: &[MemoryArea]) -> Box<Self> {
//! // omitted
//! }
//! }
//! ```
//!
//! Hence, the structures can also be build at runtime. This is what we
//! consider **idiomatic and rusty**.
//!
//! ## Creating Fat Pointers with [`ptr_meta`]
//!
//! Fat pointers are a language feature and the base for references to
//! dynamically sized types, such as `&str`, `&[T]`, `dyn T` or
//! `&DynamicallySizedStruct`.
//!
//! Currently, they can't be created using the standard library, but
//! [`ptr_meta`] can be utilized.
//!
//! To create fat pointers with [`ptr_meta`], each tag needs a `Metadata` type
//! which is either `usize` (for DSTs) or `()`. A trait is needed to abstract
//! above sized or unsized types. This is done by [`MaybeDynSized`].
//!
//! ## Multiboot2 Requirements
//!
//! All tags must be 8-byte aligned. The actual payload of tags may be followed
//! by padding zeroes to fill the gap until the next alignment boundary, if
//! necessary. These zeroes are not reflected in the tag's size, but for Rust,
//! must be reflected in the type's memory allocation.
//!
//! ## Rustc Requirements
//!
//! The required allocation space that Rust uses for types is a multiple of the
//! alignment. This means that if we cast between byte slices and specific
//! types, Rust doesn't just see the "trimmed down actual payload" defined by
//! struct members, but also any necessary, but hidden, padding bytes. If we
//! don't guarantee the correct is not the case, for example we cast the bytes
//! from a `&[u8; 15]` to an 8-byte aligned struct, Miri will complain as it
//! expects `&[u8; 16]`.
//!
//! See <https://doc.rust-lang.org/reference/type-layout.html> for information.
//!
//! Further, this also means that we can't cast references to smaller structs
//! to bigger ones. Also, once we construct a `Box` on the heap and construct
//! it using the [`new_boxed`] helper, we must ensure that the default
//! [`Layout`] for the underlying type equals the one we manually used for the
//! allocation.
//!
//! ## Parsing and Casting
//!
//! The general idea of parsing is that the lifetime of the original byte slice
//! propagates through to references of target types.
//!
//! First, we need byte slices which are guaranteed to be aligned and are a
//! multiple of the alignment. We have [`BytesRef`] for that. With that, we can
//! create a [`DynSizedStructure`]. This is a rusty type that owns all the bytes
//! it owns, according to the size reported by its header. Using this type
//! and with the help of [`MaybeDynSized`], we can call
//! [`DynSizedStructure::cast`] to cast this to arbitrary sized or unsized
//! struct types fulfilling the corresponding requirements.
//!
//! This way, one can create nice rusty structs modeling the structure of the
//! tags, and we only need a single "complicated" type, namely
//! [`DynSizedStructure`].
//!
//! ## Iterating Tags
//!
//! To iterate over the tags of a structure, use [`TagIter`].
//!
//! # Memory Guarantees and Safety Promises
//!
//! For the parsing and construction of Multiboot2 structures, the alignment
//! and necessary padding bytes as discussed above are guaranteed. When types
//! are constructed, they return Results with appropriate error types. If
//! during runtime something goes wrong, for example due to malformed tags,
//! panics guarantee that no UB will happen.
//!
//! # No Public API
//!
//! Not meant as stable public API for others outside Multiboot2.
//!
//! [`Layout`]: core::alloc::Layout
#![no_std]
// --- BEGIN STYLE CHECKS ---
#![deny(
clippy::all,
clippy::cargo,
clippy::must_use_candidate,
clippy::nursery,
missing_debug_implementations,
missing_docs,
rustdoc::all
)]
#![allow(clippy::multiple_crate_versions)]
// --- END STYLE CHECKS ---
#[cfg_attr(test, macro_use)]
#[cfg(test)]
extern crate std;
#[cfg(feature = "alloc")]
extern crate alloc;
#[allow(unused)]
pub mod test_utils;
#[cfg(feature = "alloc")]
mod boxed;
mod bytes_ref;
mod iter;
mod tag;
#[cfg(feature = "alloc")]
pub use boxed::{clone_dyn, new_boxed};
pub use bytes_ref::BytesRef;
pub use iter::TagIter;
pub use tag::{MaybeDynSized, Tag};
use core::fmt::Debug;
use core::mem;
use core::ptr;
use core::ptr::NonNull;
use core::slice;
use thiserror::Error;
/// The alignment of all Multiboot2 data structures.
pub const ALIGNMENT: usize = 8;
/// A sized header type for [`DynSizedStructure`].
///
/// Note that `header` refers to the header pattern. Thus, depending on the use
/// case, this is not just a tag header. Instead, it refers to all bytes that
/// are fixed and not part of any optional terminating dynamic `[u8]` slice in a
/// [`DynSizedStructure`].
///
/// The alignment of implementors **must** be the compatible with the demands
/// for the corresponding structure, which typically is [`ALIGNMENT`].
pub trait Header: Clone + Sized + PartialEq + Eq + Debug {
/// Returns the length of the payload, i.e., the bytes that are additional
/// to the header. The value is measured in bytes.
#[must_use]
fn payload_len(&self) -> usize;
/// Returns the total size of the struct, thus the size of the header itself
/// plus [`Header::payload_len`].
#[must_use]
fn total_size(&self) -> usize {
mem::size_of::<Self>() + self.payload_len()
}
/// Updates the header with the given `total_size`.
fn set_size(&mut self, total_size: usize);
}
/// An C ABI-compatible dynamically sized type with a common sized [`Header`]
/// and a dynamic amount of bytes without hidden implicit padding.
///
/// This structures combines a [`Header`] with the logically owned data by
/// that header according to the reported [`Header::payload_len`]. Instances
/// guarantees that the memory requirements promised in the crates description
/// are respected.
///
/// This can be a Multiboot2 header tag, information tag, boot information, or
/// a Multiboot2 header. It is the base for **same-size casts** to these
/// corresponding structures using [`DynSizedStructure::cast`]. Depending on the
/// context, the [`Header`] is different (header header, boot information
/// header, header tag header, or boot information tag header).
///
/// # ABI
/// This type uses the C ABI. The fixed [`Header`] portion is always there.
/// Further, there is a variable amount of payload bytes. Thus, this type can
/// only exist on the heap or references to it can be made by cast via fat
/// pointers. The main constructor is [`DynSizedStructure::ref_from_bytes`].
///
/// As terminating padding might be necessary for the proper Rust type layout,
/// `size_of_val(&self)` might report additional padding bytes that are not
/// reflected by the actual payload. These additional padding bytes however
/// will be reflected in corresponding [`BytesRef`] instances from that this
/// structure was created.
#[derive(Debug, PartialEq, Eq, ptr_meta::Pointee)]
#[repr(C, align(8))]
pub struct DynSizedStructure<H: Header> {
header: H,
payload: [u8],
// Plus optional padding bytes to next alignment boundary, which are not
// reflected here. However, Rustc allocates them anyway and expects them
// to be there.
// See <https://doc.rust-lang.org/reference/type-layout.html>.
}
impl<H: Header> DynSizedStructure<H> {
/// Creates a new fat-pointer backed reference to a [`DynSizedStructure`]
/// from the given [`BytesRef`].
pub fn ref_from_bytes(bytes: BytesRef<H>) -> Result<&Self, MemoryError> {
let ptr = bytes.as_ptr().cast::<H>();
let hdr = unsafe { &*ptr };
if hdr.payload_len() > bytes.len() {
return Err(MemoryError::InvalidReportedTotalSize);
}
// At this point we know that the memory slice fulfills the base
// assumptions and requirements. Now, we safety can create the fat
// pointer.
let dst_size = hdr.payload_len();
// Create fat pointer for the DST.
let ptr = ptr_meta::from_raw_parts(ptr.cast(), dst_size);
let reference = unsafe { &*ptr };
Ok(reference)
}
/// Creates a new fat-pointer backed reference to a [`DynSizedStructure`]
/// from the given `&[u8]`.
pub fn ref_from_slice(bytes: &[u8]) -> Result<&Self, MemoryError> {
let bytes = BytesRef::<H>::try_from(bytes)?;
Self::ref_from_bytes(bytes)
}
/// Creates a new fat-pointer backed reference to a [`DynSizedStructure`]
/// from the given thin pointer to the [`Header`]. It reads the total size
/// from the header.
///
/// # Safety
/// The caller must ensure that the function operates on valid memory.
pub unsafe fn ref_from_ptr<'a>(ptr: NonNull<H>) -> Result<&'a Self, MemoryError> {
let ptr = ptr.as_ptr().cast_const();
let hdr = unsafe { &*ptr };
let slice = unsafe { slice::from_raw_parts(ptr.cast::<u8>(), hdr.total_size()) };
Self::ref_from_slice(slice)
}
/// Returns the underlying [`Header`].
pub const fn header(&self) -> &H {
&self.header
}
/// Returns the underlying payload.
pub const fn payload(&self) -> &[u8] {
&self.payload
}
/// Performs a memory-safe same-size cast from the base-structure to a
/// specific [`MaybeDynSized`]. The idea here is to cast the generic
/// mostly semantic-free version to a specific type with fields that have
/// a clear semantic.
///
/// The provided `T` of type [`MaybeDynSized`] might be may be sized type
/// or DST. This depends on the type. However, the source and the target
/// both will have the same actual payload size and the same
/// [`size_of_val`].
///
/// # Panic
/// Panics if base assumptions are violated. For example, the
/// `T` of type [`MaybeDynSized`] must allow proper same-size casting to it.
///
/// # Safety
/// This function is safe due to various sanity checks and the overall
/// memory assertions done while constructing this type.
///
/// # Panics
/// This panics if there is a size mismatch. However, this should never be
/// the case if all types follow their documented requirements.
///
/// [`size_of_val`]: mem::size_of_val
pub fn cast<T: MaybeDynSized<Header = H> + ?Sized>(&self) -> &T {
// Thin or fat pointer, depending on type.
// However, only thin ptr is needed.
let base_ptr = ptr::addr_of!(*self);
// This should be a compile-time assertion. However, this is the best
// location to place it for now.
assert!(T::BASE_SIZE >= mem::size_of::<H>());
let t_dst_size = T::dst_len(self.header());
// Creates thin or fat pointer, depending on type.
let t_ptr = ptr_meta::from_raw_parts(base_ptr.cast(), t_dst_size);
let t_ref = unsafe { &*t_ptr };
assert_eq!(mem::size_of_val(self), mem::size_of_val(t_ref));
t_ref
}
}
/// Errors that may occur when working with memory.
#[derive(Copy, Clone, Debug, Ord, PartialOrd, Eq, PartialEq, Hash, Error)]
pub enum MemoryError {
/// The memory points to null.
#[error("memory points to null")]
Null,
/// The memory must be at least [`ALIGNMENT`]-aligned.
#[error("memory is not properly aligned")]
WrongAlignment,
/// The memory must cover at least the length of the sized structure header
/// type.
#[error("memory range is shorter than the size of the header structure")]
ShorterThanHeader,
/// The buffer misses the terminating padding to the next alignment
/// boundary. The padding is relevant to satisfy Rustc/Miri, but also the
/// spec mandates that the padding is added.
#[error("memory is missing required padding")]
MissingPadding,
/// The size-property has an illegal value that can't be fulfilled with the
/// given bytes.
#[error("the header reports an invalid total size")]
InvalidReportedTotalSize,
}
/// Increases the given size to the next alignment boundary, if it is not a
/// multiple of the alignment yet.
///
/// This is relevant as in Rust's [type layout], the allocated size of a type is
/// always a multiple of the alignment, even if the type is smaller.
///
/// [type layout]: https://doc.rust-lang.org/reference/type-layout.html
#[must_use]
pub const fn increase_to_alignment(size: usize) -> usize {
let mask = ALIGNMENT - 1;
(size + mask) & !mask
}
#[cfg(test)]
mod tests {
use super::*;
use crate::test_utils::{AlignedBytes, DummyTestHeader};
use core::borrow::Borrow;
#[test]
fn test_increase_to_alignment() {
assert_eq!(increase_to_alignment(0), 0);
assert_eq!(increase_to_alignment(1), 8);
assert_eq!(increase_to_alignment(7), 8);
assert_eq!(increase_to_alignment(8), 8);
assert_eq!(increase_to_alignment(9), 16);
}
#[test]
fn test_cast_generic_tag_to_sized_tag() {
#[repr(C)]
struct CustomSizedTag {
tag_header: DummyTestHeader,
a: u32,
b: u32,
}
impl MaybeDynSized for CustomSizedTag {
type Header = DummyTestHeader;
const BASE_SIZE: usize = mem::size_of::<Self>();
fn dst_len(_header: &DummyTestHeader) -> Self::Metadata {}
}
let bytes = AlignedBytes([
/* id: 0xffff_ffff */
0xff_u8, 0xff_u8, 0xff_u8, 0xff_u8, /* id: 16 */
16, 0, 0, 0, /* field a: 0xdead_beef */
0xef, 0xbe, 0xad, 0xde, /* field b: 0x1337_1337 */
0x37, 0x13, 0x37, 0x13,
]);
let tag = DynSizedStructure::ref_from_slice(bytes.borrow()).unwrap();
let custom_tag = tag.cast::<CustomSizedTag>();
assert_eq!(mem::size_of_val(custom_tag), 16);
assert_eq!(custom_tag.a, 0xdead_beef);
assert_eq!(custom_tag.b, 0x1337_1337);
}
#[test]
fn test_cast_generic_tag_to_self() {
#[rustfmt::skip]
let bytes = AlignedBytes::new(
[
0x37, 0x13, 0, 0,
/* Tag size */
18, 0, 0, 0,
/* Some payload. */
0, 1, 2, 3,
4, 5, 6, 7,
8, 9,
// Padding
0, 0, 0, 0, 0, 0
],
);
let tag = DynSizedStructure::ref_from_slice(bytes.borrow()).unwrap();
// Main objective here is also that this test passes Miri.
let tag = tag.cast::<DynSizedStructure<DummyTestHeader>>();
assert_eq!(tag.header().typ(), 0x1337);
assert_eq!(tag.header().size(), 18);
}
}