1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
//! Exports item [`InformationBuilder`].
use crate::builder::{AsBytes, BoxedDst};
use crate::{
BasicMemoryInfoTag, BootInformationHeader, BootLoaderNameTag, CommandLineTag,
EFIBootServicesNotExitedTag, EFIImageHandle32Tag, EFIImageHandle64Tag, EFIMemoryMapTag,
EFISdt32Tag, EFISdt64Tag, ElfSectionsTag, EndTag, FramebufferTag, ImageLoadPhysAddrTag,
MemoryMapTag, ModuleTag, RsdpV1Tag, RsdpV2Tag, SmbiosTag, TagTrait, TagType,
};
use alloc::vec::Vec;
use core::fmt::{Display, Formatter};
use core::mem::size_of;
use core::ops::Deref;
/// Holds the raw bytes of a boot information built with [`InformationBuilder`]
/// on the heap. The bytes returned by [`BootInformationBytes::as_bytes`] are
/// guaranteed to be properly aligned.
#[derive(Clone, Debug)]
pub struct BootInformationBytes {
// Offset into the bytes where the MBI starts. This is necessary to
// guarantee alignment at the moment.
offset: usize,
structure_len: usize,
bytes: Vec<u8>,
}
impl BootInformationBytes {
/// Returns the bytes. They are guaranteed to be correctly aligned.
pub fn as_bytes(&self) -> &[u8] {
let slice = &self.bytes[self.offset..self.offset + self.structure_len];
// At this point, the alignment is guaranteed. If not, something is
// broken fundamentally.
assert_eq!(slice.as_ptr().align_offset(8), 0);
slice
}
}
impl Deref for BootInformationBytes {
type Target = [u8];
fn deref(&self) -> &Self::Target {
self.as_bytes()
}
}
type SerializedTag = Vec<u8>;
/// Error that indicates a tag was added multiple times that is not allowed to
/// be there multiple times.
#[derive(Debug)]
#[allow(unused)]
pub struct RedundantTagError(TagType);
impl Display for RedundantTagError {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
write!(f, "{:?}", self)
}
}
#[cfg(feature = "unstable")]
impl core::error::Error for RedundantTagError {}
/// Builder to construct a valid Multiboot2 information dynamically at runtime.
/// The tags will appear in the order of their corresponding enumeration,
/// except for the END tag.
#[derive(Debug, PartialEq, Eq)]
pub struct InformationBuilder(Vec<(TagType, SerializedTag)>);
impl Default for InformationBuilder {
fn default() -> Self {
Self::new()
}
}
impl InformationBuilder {
/// Creates a new builder.
pub const fn new() -> Self {
Self(Vec::new())
}
/// Returns the provided number or the next multiple of 8. This is helpful
/// to ensure that the following tag starts at a 8-byte aligned boundary.
const fn size_or_up_aligned(size: usize) -> usize {
(size + 7) & !7
}
/// Returns the expected length of the boot information, when the
/// [`Self::build`]-method is called. This function assumes that the begin
/// of the boot information is 8-byte aligned and automatically adds padding
/// between tags to ensure that each tag is 8-byte aligned.
pub fn expected_len(&self) -> usize {
let tag_size_iter = self.0.iter().map(|(_, bytes)| bytes.len());
let payload_tags_size = tag_size_iter.fold(0, |acc, tag_size| {
// size_or_up_aligned: make sure next tag is 8-byte aligned
acc + Self::size_or_up_aligned(tag_size)
});
size_of::<BootInformationHeader>() + payload_tags_size + size_of::<EndTag>()
}
/// Adds the bytes of a tag to the final Multiboot2 information byte vector.
fn build_add_tag(dest_buf: &mut Vec<u8>, tag_serialized: &[u8], tag_type: TagType) {
let vec_next_write_ptr = unsafe { dest_buf.as_ptr().add(dest_buf.len()) };
// At this point, the alignment is guaranteed. If not, something is
// broken fundamentally.
assert_eq!(vec_next_write_ptr.align_offset(8), 0);
dest_buf.extend(tag_serialized);
if tag_type != TagType::End {
let size = tag_serialized.len();
let size_to_8_align = Self::size_or_up_aligned(size);
let size_to_8_align_diff = size_to_8_align - size;
// fill zeroes so that next data block is 8-byte aligned
dest_buf.extend([0].repeat(size_to_8_align_diff));
}
}
/// Constructs the bytes for a valid Multiboot2 information with the given properties.
pub fn build(self) -> BootInformationBytes {
const ALIGN: usize = 8;
// PHASE 1/2: Prepare Vector
// We allocate more than necessary so that we can ensure an correct
// alignment within this data.
let expected_len = self.expected_len();
let alloc_len = expected_len + 7;
let mut bytes = Vec::<u8>::with_capacity(alloc_len);
// Pointer to check that no relocation happened.
let alloc_ptr = bytes.as_ptr();
// As long as there is no nice way in stable Rust to guarantee the
// alignment of a vector, I add zero bytes at the beginning and the MBI
// might not start at the start of the allocation.
//
// Unfortunately, it is not possible to reliably test this in a unit
// test as long as the allocator_api feature is not stable.
// Due to my manual testing, however, it works.
let offset = bytes.as_ptr().align_offset(ALIGN);
bytes.extend([0].repeat(offset));
// -----------------------------------------------
// PHASE 2/2: Add Tags
bytes.extend(BootInformationHeader::new(self.expected_len() as u32).as_bytes());
for (tag_type, tag_serialized) in self.0 {
Self::build_add_tag(&mut bytes, tag_serialized.as_slice(), tag_type)
}
Self::build_add_tag(&mut bytes, EndTag::default().as_bytes(), TagType::End);
assert_eq!(
alloc_ptr,
bytes.as_ptr(),
"Vector was reallocated. Alignment of MBI probably broken!"
);
assert_eq!(
bytes[0..offset].iter().sum::<u8>(),
0,
"The offset to alignment area should be zero."
);
BootInformationBytes {
offset,
bytes,
structure_len: expected_len,
}
}
/// Adds a arbitrary tag that implements [`TagTrait`] to the builder. Only
/// [`TagType::Module`] and [`TagType::Custom`] are allowed to occur
/// multiple times. For other tags, this function returns an error.
///
/// It is not required to manually add the [`TagType::End`] tag.
///
/// The tags of the boot information will be ordered naturally, i.e., by
/// their numeric ID.
pub fn add_tag<T: TagTrait + ?Sized>(mut self, tag: &T) -> Result<Self, RedundantTagError> {
// not required to do this manually
if T::ID == TagType::End {
return Ok(self);
}
let is_redundant_tag = self
.0
.iter()
.map(|(typ, _)| *typ)
.any(|typ| typ == T::ID && !Self::tag_is_allowed_multiple_times(typ));
if is_redundant_tag {
log::debug!(
"Can't add tag of type {:?}. Only Module tags and Custom tags are allowed to appear multiple times.",
T::ID
);
return Err(RedundantTagError(T::ID));
}
self.0.push((T::ID, tag.as_bytes().to_vec()));
self.0.sort_by_key(|(typ, _)| *typ);
Ok(self)
}
/// Adds a 'basic memory information' tag (represented by [`BasicMemoryInfoTag`]) to the builder.
pub fn basic_memory_info_tag(self, tag: BasicMemoryInfoTag) -> Self {
self.add_tag(&tag).unwrap()
}
/// Adds a 'bootloader name' tag (represented by [`BootLoaderNameTag`]) to the builder.
pub fn bootloader_name_tag(self, tag: BoxedDst<BootLoaderNameTag>) -> Self {
self.add_tag(&*tag).unwrap()
}
/// Adds a 'command line' tag (represented by [`CommandLineTag`]) to the builder.
pub fn command_line_tag(self, tag: BoxedDst<CommandLineTag>) -> Self {
self.add_tag(&*tag).unwrap()
}
/// Adds a 'EFI 32-bit system table pointer' tag (represented by [`EFISdt32Tag`]) to the builder.
pub fn efisdt32_tag(self, tag: EFISdt32Tag) -> Self {
self.add_tag(&tag).unwrap()
}
/// Adds a 'EFI 64-bit system table pointer' tag (represented by [`EFISdt64Tag`]) to the builder.
pub fn efisdt64_tag(self, tag: EFISdt64Tag) -> Self {
self.add_tag(&tag).unwrap()
}
/// Adds a 'EFI boot services not terminated' tag (represented by [`EFIBootServicesNotExitedTag`]) to the builder.
pub fn efi_boot_services_not_exited_tag(self) -> Self {
self.add_tag(&EFIBootServicesNotExitedTag::new()).unwrap()
}
/// Adds a 'EFI 32-bit image handle pointer' tag (represented by [`EFIImageHandle32Tag`]) to the builder.
pub fn efi_image_handle32(self, tag: EFIImageHandle32Tag) -> Self {
self.add_tag(&tag).unwrap()
}
/// Adds a 'EFI 64-bit image handle pointer' tag (represented by [`EFIImageHandle64Tag`]) to the builder.
pub fn efi_image_handle64(self, tag: EFIImageHandle64Tag) -> Self {
self.add_tag(&tag).unwrap()
}
/// Adds a 'EFI Memory map' tag (represented by [`EFIMemoryMapTag`]) to the builder.
pub fn efi_memory_map_tag(self, tag: BoxedDst<EFIMemoryMapTag>) -> Self {
self.add_tag(&*tag).unwrap()
}
/// Adds a 'ELF-Symbols' tag (represented by [`ElfSectionsTag`]) to the builder.
pub fn elf_sections_tag(self, tag: BoxedDst<ElfSectionsTag>) -> Self {
self.add_tag(&*tag).unwrap()
}
/// Adds a 'Framebuffer info' tag (represented by [`FramebufferTag`]) to the builder.
pub fn framebuffer_tag(self, tag: BoxedDst<FramebufferTag>) -> Self {
self.add_tag(&*tag).unwrap()
}
/// Adds a 'Image load base physical address' tag (represented by [`ImageLoadPhysAddrTag`]) to the builder.
pub fn image_load_addr(self, tag: ImageLoadPhysAddrTag) -> Self {
self.add_tag(&tag).unwrap()
}
/// Adds a (*none EFI*) 'memory map' tag (represented by [`MemoryMapTag`]) to the builder.
pub fn memory_map_tag(self, tag: BoxedDst<MemoryMapTag>) -> Self {
self.add_tag(&*tag).unwrap()
}
/// Adds a 'Modules' tag (represented by [`ModuleTag`]) to the builder.
/// This tag can occur multiple times in boot information.
pub fn add_module_tag(self, tag: BoxedDst<ModuleTag>) -> Self {
self.add_tag(&*tag).unwrap()
}
/// Adds a 'ACPI old RSDP' tag (represented by [`RsdpV1Tag`]) to the builder.
pub fn rsdp_v1_tag(self, tag: RsdpV1Tag) -> Self {
self.add_tag(&tag).unwrap()
}
/// Adds a 'ACPI new RSDP' tag (represented by [`RsdpV2Tag`]) to the builder.
pub fn rsdp_v2_tag(self, tag: RsdpV2Tag) -> Self {
self.add_tag(&tag).unwrap()
}
/// Adds a 'SMBIOS tables' tag (represented by [`SmbiosTag`]) to the builder.
pub fn smbios_tag(self, tag: BoxedDst<SmbiosTag>) -> Self {
self.add_tag(&*tag).unwrap()
}
fn tag_is_allowed_multiple_times(tag_type: TagType) -> bool {
matches!(
tag_type,
TagType::Module | TagType::Smbios | TagType::Custom(_)
)
}
}
#[cfg(test)]
mod tests {
use crate::builder::information::InformationBuilder;
use crate::{BasicMemoryInfoTag, BootInformation, CommandLineTag, ModuleTag};
fn create_builder() -> InformationBuilder {
let mut builder = InformationBuilder::new();
// Multiboot2 basic information + end tag
let mut expected_len = 8 + 8;
assert_eq!(builder.expected_len(), expected_len);
// the most simple tag
builder = builder.basic_memory_info_tag(BasicMemoryInfoTag::new(640, 7 * 1024));
expected_len += 16;
assert_eq!(builder.expected_len(), expected_len);
// a tag that has a dynamic size
builder = builder.command_line_tag(CommandLineTag::new("test"));
expected_len += 8 + 5 + 3; // padding
assert_eq!(builder.expected_len(), expected_len);
// many modules
builder = builder.add_module_tag(ModuleTag::new(0, 1234, "module1"));
expected_len += 16 + 8;
assert_eq!(builder.expected_len(), expected_len);
builder = builder.add_module_tag(ModuleTag::new(5678, 6789, "module2"));
expected_len += 16 + 8;
assert_eq!(builder.expected_len(), expected_len);
println!("builder: {:#?}", builder);
println!("expected_len: {} bytes", builder.expected_len());
builder
}
#[test]
fn test_size_or_up_aligned() {
assert_eq!(0, InformationBuilder::size_or_up_aligned(0));
assert_eq!(8, InformationBuilder::size_or_up_aligned(1));
assert_eq!(8, InformationBuilder::size_or_up_aligned(8));
assert_eq!(16, InformationBuilder::size_or_up_aligned(9));
}
/// Test of the `build` method in isolation specifically for miri to check
/// for memory issues.
#[test]
fn test_builder_miri() {
let builder = create_builder();
let expected_len = builder.expected_len();
assert_eq!(builder.build().as_bytes().len(), expected_len);
}
#[test]
#[cfg_attr(miri, ignore)]
fn test_builder() {
// Step 1/2: Build MBI
let mb2i_data = create_builder().build();
// Step 2/2: Test the built MBI
let mb2i = unsafe { BootInformation::load(mb2i_data.as_ptr().cast()) }
.expect("generated information should be readable");
assert_eq!(mb2i.basic_memory_info_tag().unwrap().memory_lower(), 640);
assert_eq!(
mb2i.basic_memory_info_tag().unwrap().memory_upper(),
7 * 1024
);
assert_eq!(mb2i.command_line_tag().unwrap().cmdline().unwrap(), "test");
let mut modules = mb2i.module_tags();
let module_1 = modules.next().unwrap();
assert_eq!(module_1.start_address(), 0);
assert_eq!(module_1.end_address(), 1234);
assert_eq!(module_1.cmdline().unwrap(), "module1");
let module_2 = modules.next().unwrap();
assert_eq!(module_2.start_address(), 5678);
assert_eq!(module_2.end_address(), 6789);
assert_eq!(module_2.cmdline().unwrap(), "module2");
assert!(modules.next().is_none());
// Printing the MBI transitively ensures that a lot of stuff works.
println!("{:#?}", mb2i);
}
}